Prioritization of ISO/IEC 25012 Data Quality Dimensions Using the AHP Technique

  • Cláudio Keiji Iwata Centro Estadual de Educação Tecnológica Paula Souza São Paulo
  • Márcia Ito Centro Estadual de Educação Tecnológica Paula Souza São Paulo

Abstract


This article presents a method for prioritizing data quality dimensions based on the ISO/IEC 25012 standard, using the Analytic Hierarchy Process (AHP) technique. The method assists in assessing data quality for training predictive models, considering the relevance of dimensions according to the application context. The research combines qualitative analysis, through the collection of expert judgments, and quantitative analysis to calculate relative weights between the selected dimensions. To assess the method’s reproducibility and applicability, a simulation was conducted for a predictive model in hospital bed management. The simulation results indicate the feasibility of guiding data quality improvement actions and strengthening information governance for use in predictive modeling.

Keywords: Data Quality, Predictive Models, Healthcare, AHP, AHP-OS, Hospital Management, ISO/IEC 25012, Data Governance

References

Brasil. Ministério da Saúde. Conselho Nacional de Saúde. 2012. Resolução nº 466, de 12 de dezembro de 2012. Diário Oficial da União: seção 1, Brasília, DF, p. 59, 13 jun. 2013. Disponível em: [link].

W. Elouataoui, I. El Alaoui, S. El Mendili, and Y. Gahi. 2022. An Advanced Big Data Quality Framework Based on Weighted Metrics. Big Data and Cognitive Computing 6, 153 (2022), 1–22. DOI: 10.3390/bdcc6040153

Klaus Goepel. 2018. Implementation of an Online Software Tool for the Processo de Análise Hierárquica (AHP-OS). International Journal of the Analytic Hierarchy Process 10, 3 (2018), 469–485. DOI: 10.13033/ijahp.v10i3.590

C. González-Pavón, C. V. Palau, J. Manzano Juárez, V. Estruch-Guitart, S. Guillem-Picó, and I. Balbastre-Peralta. 2019. Optimization of Collective Irrigation Network Layout through the Application of the Analytic Hierarchy Process (AHP) Multicriteria Analysis Method. Water (2019).

P. C. Grossler and J. Fleck. 2017. An application of the Analytic Hierarchy Process to the evaluation of companies’ data maturity. Journal of Decision Systems 26, 4 (2017), 344–355.

ISO/IEC. 2008. ISO/IEC 25012:2008 Software engineering – Software product quality requirements and evaluation (SQuaRE) - Data quality model. Disponível em: [link].

Steven Labkoff et al. 2024. Toward a responsible future: recommendations for AI-enabled clinical decision support. Journal of the American Medical Informatics Association 31, 11 (2024), 2730–2739. DOI: 10.1093/jamia/ocae209

S. E. Labkoff and D. F. Sittig. 2017. Who watches the watchers: working towards safety for EHR knowledge resources. Applied Clinical Informatics 8, 2 (2017), 680–685. DOI: 10.4338/ACI-2017-02-IE-0032

R. Li, L. J. Sun, H. Zhang, C. Yao, and G. Luo. 2017. Research on DC voltage class series with AHP. The Journal of Engineering 13 (2017), 1993–1998. DOI: 10.1049/joe.2017.0678

S. Malacaria et al. 2023. An Application of the Analytic Hierarchy Process to the Evaluation of Companies’ Data Maturity. SN Computer Science 4 (2023), 696. DOI: 10.1007/s42979-023-02065-9

Seyede Maryam Najibi, Farhad Lotfi, Erfan Kharazmi, Payam Farhadi, Payam Shojaei, Peivand Bastani, and Zahra Kavosi. 2021. Identification and Prioritization of Local Indicators of Hospital Bed Allocation in Iran. Research Square (2021). DOI: 10.21203/rs.3.rs-609451/v1

Thomas L. Saaty. 1994. How to Make a Decision: The Analytic Hierarchy Process. RWS Publications, Pittsburgh. 101 pages.

T. L. Saaty. 2008. Decision making with the analytic hierarchy process. International Journal of Services Sciences 1, 1 (2008), 83–98.

G. M. Sani, A. M. Abas, N. Yusoff, and M. F. Said. 2023. Site selection for electric vehicle charging stations using GIS with MCDM AHP FAHP and TOPSIS techniques: A Review. IOP Conference Series: Earth and Environmental Science 1274 (2023), 012019. DOI: 10.1088/1755-1315/1274/1/012019

J. A. Silva and M. R. Oliveira. 2020. Saúde digital: desafios e oportunidades na era da transformação digital. Revista Brasileira de Saúde Digital 5, 2 (2020), 45–58. DOI: 10.5220/0012185900003598

Samuel Fosso Wamba, Shahriar Akter, Laura Trinchera, and Marc de Bourmont. 2019. Turning information quality into firm performance in the big data economy. Management Decision 57, 8 (2019), 1756–1783. [link]

Y. Wand and R. Y. Wang. 1996. Anchoring data quality dimensions in ontological foundations. Commun. ACM 39, 11 (1996), 87–93. DOI: 10.1145/240455.240456

N. G. Weiskopf et al. 2017. A Data Quality Assessment Guideline for Electronic Health Record Data Reuse. eGEMs (Generating Evidence & Methods to improve patient outcomes) 5, 1 (2017), 1–19. DOI: 10.13063/egems.1280.s1
Published
2025-11-04
IWATA, Cláudio Keiji; ITO, Márcia. Prioritization of ISO/IEC 25012 Data Quality Dimensions Using the AHP Technique. In: BRAZILIAN SOFTWARE QUALITY SYMPOSIUM (SBQS), 24. , 2025, São José dos Campos/SP. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2025 . p. 34-43. DOI: https://doi.org/10.5753/sbqs.2025.13603.