DevMetrics: An Experience Report on Effort Estimation in Software Maintenance Using a Jira-Integrated Framework

  • Marcos Andrade UTFPR
  • Marisangela Brittes UTFPR
  • Alinne Souza UTFPR
  • Jessica Pegorini UTFPR

Abstract


This paper presents the development of DevMetrics, a generic system designed to support effort estimation in software maintenance activities. The tool combines textual similarity (Jaccard index) with statistical regression (linear and exponential), normalized using the Fibonacci sequence, and integrates seamlessly with Jira. A case study was conducted in a medium-sized software house using MMRE and PRED(0.25) metrics, along with Likert-based surveys to assess team perception. Results show that the tool enhances estimation accuracy and planning predictability, especially when teams adopt standardized task descriptions and ensure historical data quality.

Keywords: Software Quality Assurance, Software Maintenance and Evolution, Software Measurement, Software Process Improvement, Agile Software Development Methods, Software Processes, Methods, and Tools

References

Atlassian. 2025. Jira Software Cloud Documentation: Project Management, Issue Tracking, and REST API Reference. [link] Disponível em: [link].

Victor R. Basili, Gianluigi Caldiera, and Dieter H. Rombach. 1994. Goal question metric paradigm. Vol. 1. 6.

Sai Mohan Reddy Chirra and Hassan Rezaorcid. 2019. A Survey on Software Cost Estimation Techniques. Journal of Software Engineering and Applications. DOI: 10.4236/jsea.2019.126014

Fred D Davis, Richard P Bagozzi, and Paul R Warshaw. 1989. User acceptance of computer technology: a comparison of two theoretical models. Management science 35, 8 (1989), 982–1003.

E. F. Franco, K. Hirama, and R. Rossi. 2018. Uma análise qualitativa-sistemática da relação entre o acúmulo de dívida técnica e a satisfação de usuários ao longo da operação de pacotes de software empresarial. (2018).

Yara Maria Almeida FREIRE and Arnaldo Dias BELCHIOR. 2006. Estimativas de Manutenção de Software a partir de Casos de Uso. In Simpósio Brasileiro de Qualidade de Software–III Workshop de Manutenção de Software Moderna, Vila Velha-ES.

Magne Jørgensen and Stein Grimstad. 2012. Does the Use of Fibonacci Numbers in Planning Poker Affect Effort Estimates?. In Empirical Software Engineering and Measurement (ESEM). –. Discusses how Fibonacci-based scales align with average estimation precision in software effort..

Jussi Koskinen. 2015. Software maintenance costs. University of Eastern Finland (2015).

Rensis Likert. 1932. A technique for the measurement of attitudes. Archives of psychology (1932).

Marcos Alexandre Miguel, Marco Antônio Pereira Araújo, José Maria N. David, and Regina M. M. Braga. 2016. Um framework para apoiar estimativa de esforço em atividades de manutenção e evolução de software [A framework to support effort estimation on software maintenance and evolution activities]. In SBSI.

Ministério da Ciência, Tecnologia e Inovações. 2022. Relatório MCTI – Software e Serviços de TIC no Brasil. [link].

Roger S. Pressman. 2016. Engenharia de software: uma abordagem profissional. (7ª ed.). McGraw Hill, Porto Alegre.

Gonzalo Travieso, Renan Benatti, and Luciano da Fontoura Costa. 2024. An Analytical Approach to the Jaccard Similarity Index. arXiv preprint arXiv:2410.16436 (October 2024). Available at: [link].

Carlos Eduardo VAZQUEZ, Guilherme Siqueira SIMÕES, and Renato Machado ALBERT. 2013. Análise de Pontos de Função: Medição, estimativas e gerenciamento de projetos de software (13 ed.). Érica, São Paulo.

Tomas Vera, Sergio Ochoa, and Daniel Perovich. 2018. Survey of Software Development Effort Estimation Taxonomies. DOI: 10.13140/RG.2.2.14599.29601

Kaliane Larissa Viesseli. 2021. Framework para estimar esforço de manutenção em um ambiente multi-equipe. UTFPR-Journal (2021).
Published
2025-11-04
ANDRADE, Marcos; BRITTES, Marisangela; SOUZA, Alinne; PEGORINI, Jessica. DevMetrics: An Experience Report on Effort Estimation in Software Maintenance Using a Jira-Integrated Framework. In: BRAZILIAN SOFTWARE QUALITY SYMPOSIUM (SBQS), 24. , 2025, São José dos Campos/SP. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2025 . p. 386-393. DOI: https://doi.org/10.5753/sbqs.2025.15088.