Escalonamento de Tarefas Ciente de Contexto para Computação de Borda Veicular

  • Joahannes B. D. da Costa UNICAMP
  • Allan M. de Souza UNICAMP
  • Rodolfo I. Meneguette USP
  • Eduardo Cerqueira UFPA
  • Denis Rosário UFPA
  • Leandro A. Villas UNICAMP

Abstract


Vehicular Edge Computing is a promising paradigm that provides cloud computing services closer to vehicular users. Vehicles and communication infrastructures can cooperatively attend vehicular services with low latency constraints through the vehicular clouds formation and use of these clouds' computational resources, where this last process is called task scheduling. An efficient task scheduler needs to decide which cloud will run the tasks, considering vehicular mobility and tasks' requirements. This is important to minimize processing time and the monetary cost of using computing power. However, the literature solutions do not consider these contextual aspects together, degrading the overall system efficiency. In this way, this work presents CARONTE, a task scheduler mechanism that considers contextual aspects in its decision process. The results have shown that CARONTE is able to schedule more tasks while minimizing monetary cost, computation delay, and queuing time when compared to state-of-the-art solutions.

References

Boukerche, A. and Soto, V. (2020). Computation offloading and retrieval for vehicular edge computing: Algorithms, models, and classification. ACM Computing Surveys (CSUR), 53(4):1–35.

da Costa, J. B. D., Peixoto, M. L. M., Meneguette, R. I., Rosário, D. L., and Villas, L. A. (2020). Morfeu: Mecanismo baseado em otimização combinatória para alocação de tarefas em nuvens veiculares. In Anais do XXXVIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 505–518. SBC.

de Souza, A. M., Oliveira, H. F., Zhao, Z., Braun, T., Villas, L., and Loureiro, A. A. F. (2020). Enhancing sensing and decision-making of automated driving systems with multi-access edge computing and machine learning. IEEE Intelligent Transportation Systems Magazine, 14(1):44–56.

Guidoni, D. L., Maia, G., Souza, F. S., Villas, L. A., and Loureiro, A. A. (2020). Vehicular traffic management based on traffic engineering for vehicular ad hoc networks. IEEE Access, 8:45167–45183.

Hattab, G., Ucar, S., Higuchi, T., Altintas, O., Dressler, F., and Cabric, D. (2019). Optimized assignment of computational tasks in vehicular micro clouds. In II International Workshop on Edge Systems and Networking (EdgeSys 2019), pages 1–6. ACM.

Li, C., Zhang, B., and Tian, X. (2021). Throughput-optimal dynamic broadcast for sinrbased multi-hop wireless networks with time-varying topology. IEEE Transactions on Vehicular Technology, 00(0):0–0.

Lieira, D. D., Quessada, M. S., da Costa, J. B., Cerqueira, E., Rosário, D., and Meneguette, R. I. (2021). Tovec: Task optimization mechanism for vehicular clouds using meta-heuristic technique. In 2021 International Wireless Communications and Mobile Computing (IWCMC), pages 358–363. IEEE.

Liu, Y., Yu, H., Xie, S., and Zhang, Y. (2019). Deep reinforcement learning for offloading and resource allocation in vehicle edge computing and networks. IEEE Transactions on Vehicular Technology, 68(11):11158–11168.

Luo, Q., Li, C., Luan, T., and Shi, W. (2021). Minimizing the delay and cost of computation offloading for vehicular edge computing. IEEE Transactions on Services Computing, 1374:1–12.

Meneguette, R., De Grande, R., Ueyama, J., Filho, G. P. R., and Madeira, E. (2021). Vehicular edge computing: Architecture, resource management, security, and challenges. ACM Computing Surveys (CSUR), 55(1):1–46.

Sorkhoh, I., Ebrahimi, D., Atallah, R., and Assi, C. (2019). Workload scheduling in vehicular networks with edge cloud capabilities. IEEE Transactions on Vehicular Technology, 68(9):8472–8486.

Wang, X., Ning, Z., Guo, S., and Wang, L. (2020). Imitation learning enabled task scheduling for online vehicular edge computing. IEEE Transactions on Mobile Computing, pages 1–14.

Wu, X., Zhao, S., Zhang, R., and Yang, L. (2020). Mobility prediction-based joint task assignment and resource allocation in vehicular fog computing. In IEEE Wireless Communications and Networking Conference (WCNC), pages 1–6. IEEE.
Published
2022-05-23
COSTA, Joahannes B. D. da; SOUZA, Allan M. de; MENEGUETTE, Rodolfo I.; CERQUEIRA, Eduardo; ROSÁRIO, Denis; VILLAS, Leandro A.. Escalonamento de Tarefas Ciente de Contexto para Computação de Borda Veicular. In: BRAZILIAN SYMPOSIUM ON COMPUTER NETWORKS AND DISTRIBUTED SYSTEMS (SBRC), 40. , 2022, Fortaleza. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2022 . p. 15-28. ISSN 2177-9384. DOI: https://doi.org/10.5753/sbrc.2022.221910.

Most read articles by the same author(s)

<< < 5 6 7 8 9 10