The Impacts of Chase Combining-based Retransmissions on LoRaWAN Performance

  • Elvis M. G. Stancanelli UFC
  • Francisco Helder C. dos S. Filho UFC

Resumo


LoRaWAN technology stands out in wireless communication applications due to its low power consumption and long-range capabilities. However, using a retransmission mechanism to ensure reliable communication can increase overhead and computational complexity, negatively impacting throughput and energy efficiency. Achieving a balance between reliability and scalability poses a challenge in LoRaWAN. One probable solution to this challenge is implementing a soft combination of retransmitted versions, prioritizing reliability characteristics. However, this approach has not yet been explored in LoRaWAN. This study examines the potential impacts of utilizing a popular soft combination of retransmission in LoRaWAN, called chase combining, and assesses its reliability and efficiency. The numerical analysis indicates that the spread factor significantly affects the advantages of chase combining. The study’s outcomes suggest that appropriately using chase combining can significantly improve the success rates of packets. However, this may lead to a minor trade-off regarding increased latency and energy consumption.

Referências

Abdelfadeel, K. Q., Zorbas, D., Cionca, V., and Pesch, D. (2020). free —fine-grained scheduling for reliable and energy-efficient data collection in lorawan. IEEE Internet of Things Journal, 7(1):669–683.

Adelantado, F., Vilajosana, X., Tuset-Peiro, P., Martinez, B., Melia-Segui, J., and Watteyne, T. (2017). Understanding the Limits of LoRaWAN. IEEE Communications Magazine, 55(9):34–40.

Ahmed, A., Al-Dweik, A., Iraqi, Y., Mukhtar, H., Naeem, M., and Hossain, E. (2021). Hybrid automatic repeat request (harq) in wireless communications systems and standards: A contemporary survey. IEEE Communications Surveys & Tutorials, 23(4):2711–2752.

Alliance, L. (2015). LoRaWAN, what is it?. a technical overview of lora and LoRaWAN. White Paper.

Alliance, L. (2018a). LoRaWAN specifications v1.0.3. LoRa Alliance: Fremont, USA.

Alliance, L. (2018b). LoRaWANtm 1.1 regional parameters. LoRa Alliance.

Capuzzo, M., Magrin, D., and Zanella, A. (2018). Confirmed traffic in lorawan: Pitfalls and countermeasures. 17th Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net 2018), pages 87–93.

Cheng, J.-F. T. (2006). Coding Performance of Hybrid ARQ Schemes. IEEE Transactions on Communications, 54(6):1017–1029.

Croce, D., Gucciardo, M., Mangione, S., Santaromita, G., and Tinnirello, I. (2018). Impact of lora imperfect orthogonality: Analysis of link-level performance. IEEE Communications Letters, 22(4):796–799.

de Castro Tomé, M., Nardelli, P. H., and Alves, H. (2018). Long-range Low-power Wireless Networks and Sampling Strategies in Electricity Metering. IEEE Transactions on Industrial Electronics, 66(2):1629–1637.

Goursaud, C. and Gorce, J.-M. (2015). Dedicated networks for iot: Phy/mac state of the art and challenges. EAI endorsed transactions on Internet of Things.

Haxhibeqiri, J., De Poorter, E., Moerman, I., and Hoebeke, J. (2018). A survey of LoRaWAN for iot: from technology to application. Sensors, 18(11):3995.

Lee, J., Yoon, Y. S., Oh, H. W., and Park, K. R. (2021). Dg-lora: Deterministic group acknowledgment transmissions in lora networks for industrial iot applications. Sensors, 21(4).

Mahmood, A., Sisinni, E., Guntupalli, L., Rondón, R., Hassan, S. A., and Gidlund, M. (2018). Scalability analysis of a lora network under imperfect orthogonality. IEEE Transactions on Industrial Informatics, 15(3):1425–1436.

Paul, B. (2020). A novel mathematical model to evaluate the impact of packet retransmissions in lorawan. IEEE Sensors Letters, 4(5):1–4.

Santos F., F. H. C., Dester, P. S., Nardelli, P. H. J., Stancanelli, E. M. G., Cardieri, P., Carrillo, D., and Alves, H. (2022). Multi-class random access wireless network: General results and performance analysis of LoRaWAN. Ad Hoc Networks, 135:102946.

Santos F., F. H. C., Dester, P. S., Stancanelli, E. M. G., Cardieri, P., Nardelli, P. H. J., Carrillo, D., and Alves, H. (2020). Performance of LoRaWAN for handling telemetry and alarm messages in industrial applications. Sensors, 20(11).

Semtech (2017). SX1272/73 860 MHz to 1020 MHz Low Power Long Range Transceiver. Semtech Corporation. Rev. 3.1.

Vangelista, L. (2017). Frequency shift chirp modulation: The LoRa modulation. IEEE Signal Processing Letters, 24(12):1818–1821.
Publicado
20/05/2024
STANCANELLI, Elvis M. G.; S. FILHO, Francisco Helder C. dos. The Impacts of Chase Combining-based Retransmissions on LoRaWAN Performance. In: SIMPÓSIO BRASILEIRO DE REDES DE COMPUTADORES E SISTEMAS DISTRIBUÍDOS (SBRC), 42. , 2024, Niterói/RJ. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024 . p. 365-378. ISSN 2177-9384. DOI: https://doi.org/10.5753/sbrc.2024.1392.