Semi-Supervised Quantum Generative Adversarial Network (sQGAN) for Attack Detection

Abstract


The evolution of cybersecurity threats demands efficient and accurate attack detection systems, yet the scarcity of labeled data limits the use of conventional supervised models. This paper proposes a Semi-Supervised Quantum Generative Adversarial Network (sQGAN) for attack detection, combining semi-supervised learning with quantum adversarial architectures to leverage labeled and unlabeled data for improved detection in data-scarce scenarios. Key contributions include (1) a semi-supervised quantum architecture effective with limited labeled data, (2) integration of quantum-based generator and discriminator networks to enhance attack detection, and (3) an experimental study comparing sQGAN’s performance with quantum architectures. Results indicate that sQGAN offers a high F1 score and robustness in detecting attacks under challenging labeling conditions.

Keywords: Quantum Machine Learning, Generative Adversarial Network, Attack Detection

References

Abreu, D., Rothenberg, C., and Abelém, A. (2024). qids: Sistema de detecção de ataques baseado em aprendizado de máquina quântico híbrido. In Anais do XLII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 295–308, Porto Alegre, RS, Brasil. SBC.

Abreu, D., Rothenberg, C. E., and Abelém, A. (2024b). Qml-ids: Quantum machine learning intrusion detection system. In 2024 IEEE Symposium on Computers and Communications (ISCC), pages 1–6. IEEE.

Bastian, N., Bierbrauer, D., McKenzie, M., and Nack, E. (2023). Aci iot network traffic dataset 2023.

Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., and Lloyd, S. (2017). Quantum machine learning. Nature, 549(7671):195–202.

Boyle, A. O. and Nikandish, R. (2024). A hybrid quantum-classical generative adversarial network for near-term quantum processors. IEEE Access.

Dadkhah, S., Neto, E. C. P., Ferreira, R., Molokwu, R. C., Sadeghi, S., and Ghorbani, A. A. (2024). Ciciomt2024: A benchmark dataset for multi-protocol security assessment in iomt. Internet of Things, 28:101351.

de Araujo-Filho, P. F., Naili, M., Kaddoum, G., Fapi, E. T., and Zhu, Z. (2023). Unsupervised gan-based intrusion detection system using temporal convolutional networks and self-attention. IEEE Transactions on Network and Service Management, 20(4):4951–4963.

Huang, H.-L., Du, Y., Gong, M., Zhao, Y., Wu, Y., Wang, C., Li, S., Liang, F., Lin, J., Xu, Y., et al. (2021). Experimental quantum generative adversarial networks for image generation. Physical Review Applied, 16(2):024051.

Idhammad, M., Afdel, K., and Belouch, M. (2018). Semi-supervised machine learning approach for ddos detection. Applied Intelligence, 48:3193–3208.

Khan, M. and Ghafoor, L. (2024). Adversarial machine learning in the context of network security: Challenges and solutions. Journal of Computational Intelligence and Robotics, 4(1):51–63.

Lim, W., Chek, K. Y. S., Theng, L. B., and Lin, C. T. C. (2024). Future of generative adversarial networks (gan) for anomaly detection in network security: A review. Computers & Security, page 103733.

Mvula, P. K., Branco, P., Jourdan, G.-V., and Viktor, H. L. (2023). A systematic literature review of cyber-security data repositories and performance assessment metrics for semi-supervised learning. Discover Data, 1(1):4.

Nakaji, K. and Yamamoto, N. (2021). Quantum semi-supervised generative adversarial network for enhanced data classification. Scientific Reports, 11(1):19649.

Nicesio, O. K., Leal, A. G., and Gava, V. L. (2023). Quantum machine learning for network intrusion detection systems, a systematic literature review. In 2023 IEEE 2nd International Conference on AI in Cybersecurity (ICAIC), pages 1–6. IEEE.

Odena, A. (2016). Semi-supervised learning with generative adversarial networks. arXiv preprint arXiv:1606.01583.

Sajun, A. R. and Zualkernan, I. (2022). Survey on implementations of generative adversarial networks for semi-supervised learning. Applied Sciences, 12(3):1718.

Sasi, T., Lashkari, A. H., Lu, R., Xiong, P., and Iqbal, S. (2024). An efficient self attention-based 1d-cnn-lstm network for iot attack detection and identification using network traffic. Journal of Information and Intelligence.

Wang, Y. and Liu, J. (2024). A comprehensive review of quantum machine learning: from nisq to fault tolerance. Reports on Progress in Physics.

Yang, X., Song, Z., King, I., and Xu, Z. (2022). A survey on deep semi-supervised learning. IEEE Transactions on Knowledge and Data Engineering, 35(9):8934–8954.
Published
2025-05-19
ABREU, Diego; MOURA, David; ROTHENBERG, Christian; ABELÉM, Antônio. Semi-Supervised Quantum Generative Adversarial Network (sQGAN) for Attack Detection. In: BRAZILIAN SYMPOSIUM ON COMPUTER NETWORKS AND DISTRIBUTED SYSTEMS (SBRC), 43. , 2025, Natal/RN. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2025 . p. 252-265. ISSN 2177-9384. DOI: https://doi.org/10.5753/sbrc.2025.5901.

Most read articles by the same author(s)

<< < 1 2 3 4 5 6 > >>