DCTPQ: Dynamic Cloud Gaming Traffic Prioritization Using Machine Learning and Multi-Queueing for QoE Enhancement

Resumo


Cloud gaming (CG) traffic requires high bandwidth and low latency to ensure Quality of Experience (QoE). We propose DCTPQ, an ML-based edge solution that dynamically identifies and prioritizes CG traffic on-the-fly, achieving 97.6% classification accuracy using packet-based and RTP frame-based features with Decision Tree (DT) and Random Forest (RF) models. DCTPQ employs separate queues for CG, UDP (Non-CG), and TCP traffic, with varied lengths and rates, implemented using P4 on the data plane. Leveraging Inband Network Telemetry (INT) and Device-in-the-Loop (DIL) techniques, we evaluate QoS (throughput, latency, packet sojourn time) and QoE (VMAF score) under congestion. The system is tested with three distinct CG games (Fortnite, Forza, Mortal Kombat) on the Xbox platform, while users play online, ensuring a realistic assessment of the deployed model’s impact on QoS and QoE.
Palavras-chave: Cloud Gaming (CG), Traffic Classification, Edge Computing, QoE

Referências

Albisser, O., De Schepper, K., Briscoe, B., Tilmans, O., and Steen, H. (2019). Dualpi2-low latency, low loss and scalable throughput (L4S) AQM. Proceedings of Netdev.

Alizadeh, M., Greenberg, A., Maltz, D. A., Padhye, J., Patel, P., Prabhakar, B., Sengupta, S., and Sridharan, M. (2010). Data center TCP (DCTCP). In Proceedings of the ACM SIGCOMM 2010 Conference, pages 63–74.

Allen, A. O. (2014). Probability, statistics, and queueing theory. Academic Press.

Bell Labs. (2024). L4S (low latency, low loss, scalable throughput). Accessed: 2024-07-26.

Bondarenko, O., De Schepper, K., Tsang, I.-J., Briscoe, B., Petlund, A., and Griwodz, C. (2016). Ultralow delay for all: Live experience, live analysis. In Proceedings of the 7th International Conference on Multimedia Systems, pages 1–4.

Carvalho, M., Soares, D., and Macedo, D. F. (2023). Transfer learning-based QoE estimation for different cloud gaming contexts. In 2023 IEEE 9th International Conference on Network Softwarization (NetSoft), pages 71–79.

de Almeida, L. C., Matos, G., Pasquini, R., Papagianni, C., and Verdi, F. L. (2022). iRED: Improving the DASH QoS by dropping packets in programmable data planes. In 2022 18th International Conference on Network and Service Management (CNSM), pages 136–144.

De Schepper, K. and Briscoe, B. (2023). The explicit congestion notification (ECN) protocol for low latency, low loss, and scalable throughput (L4S). Technical Report, RFC 9331. DOI: 10.17487/RFC9331.

Floyd, S. and Jacobson, V. (1993). Random early detection gateways for congestion avoidance. IEEE/ACM Transactions on Networking, 1(4):397–413.

Gettys, J. and Nichols, K. (2011). Bufferbloat: Dark buffers in the Internet: Networks without effective AQM may again be vulnerable to congestion collapse. Queue, 9(11):40–54.

Gil, G. D., Lashkari, A. H., Mamun, M., and Ghorbani, A. A. (2016). Characterization of encrypted and VPN traffic using time-related features. In Proceedings of the 2nd International Conference on Information Systems Security and Privacy (ICISSP 2016), pages 407–414. SciTePress Setúbal, Portugal.

Graff, P., Marchal, X., Cholez, T., Mathieu, B., and Festor, O. (2023). Efficient identification of cloud gaming traffic at the edge. In NOMS 2023-2023 IEEE/IFIP Network Operations and Management Symposium, pages 1–10. IEEE.

Graff, P., Marchal, X., Cholez, T., Mathieu, B., Tuffin, S., and Festor, O. (2024). Improving cloud gaming traffic QoS: A comparison between class-based queuing policy and L4S. In Network Traffic Measurement and Analysis Conference (TMA 2024), page 10. IEEE.

Huitema, C., Nandakumar, S., and Jennings, C. F. (2024). BBR Improvements for Real-Time Connections. Internet-Draft draft-huitema-ccwg-bbr-realtime-00, Internet Engineering Task Force. Work in Progress.

Jacobson, V. and Kathleen, N. (2012). Controlling queue delay—a modern AQM is just one piece of the solution to bufferbloat. Association for Computing Machinery (ACM Queue).

Jarschel, M., Schlosser, D., Scheuring, S., and Hoßfeld, T. (2011). An evaluation of QoE in cloud gaming based on subjective tests. In 2011 Fifth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, pages 330–335. IEEE.

Kougioumtzidis, G., Vlahov, A., Poulkov, V. K., Lazaridis, P. I., and Zaharis, Z. D. (2024). QoE prediction for gaming video streaming in O-RAN using convolutional neural networks. IEEE Open Journal of the Communications Society, 5:1167–1181.

Marchal, X., Graff, P., Ky, J. R., Cholez, T., Tuffin, S., Mathieu, B., and Festor, O. (2023). An analysis of cloud gaming platforms' behavior under synthetic network constraints and real cellular networks conditions. Journal of Network and Systems Management, 31(2):39.

Nádas, S., Ernström, L., Szilágyi, L., Patra, G., Krylov, D., and Lynam, J. (2024). To QoE or not to QoE. In Proceedings of the 2024 Applied Networking Research Workshop, ANRW '24, pages 38–44, New York, NY, USA. Association for Computing Machinery.

Netflix, I. (2024). VMAF: The Video Multi-Method Assessment Framework. Accessed: 2024-07-29.

Nokia. (2024). Nokia and Vodafone conduct world’s first trial of L4S technology over an end-to-end PON network. Accessed: 2024-07-26.

Pan, R., Natarajan, P., Piglione, C., Prabhu, M. S., Subramanian, V., Baker, F., and VerSteeg, B. (2013). PIE: A lightweight control scheme to address the bufferbloat problem. In 2013 IEEE 14th International Conference on High Performance Switching and Routing (HPSR), pages 148–155. IEEE.

Ramakrishnan, K., Floyd, S., and Black, D. (2001). The addition of explicit congestion notification (ECN) to IP. Technical Report.

Rhee, I., Xu, L., Ha, S., Zimmermann, A., Eggert, L., and Scheffenegger, R. (2018). CUBIC for fast long-distance networks. Technical Report.

Shirmarz, A., Verdi, F. L., Singh, S. K., and Rothenberg, C. E. (2024a). From pixels to packets: Traffic classification of augmented reality and cloud gaming. In 2024 IEEE 10th International Conference on Network Softwarization (NetSoft), pages 195–203. IEEE.

Shirmarz, A., Verdi, F. L., Singh, S. K., and Rothenberg, C. E. (2024b). POSMAC: Powering up in-network AR/CG traffic classification with online learning. In 2024 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), pages 1–5. IEEE.

Xu, L., Ha, S., Rhee, I., Goel, V., and Eggert, L. (2023). CUBIC for fast and long-distance networks. RFC 9438.

Xu, X. and Claypool, M. (2022). Measurement of cloud-based game streaming system response to competing TCP CUBIC or TCP BBR flows. In Proceedings of the 22nd ACM Internet Measurement Conference, pages 305–316.
Publicado
19/05/2025
SHIRMARZ, Alireza; HENRIQUE DE FRANÇA MARQUES, Carlos; LUCIANO VERDI, Fábio; SILVA NETTO, Roberto; KUMAR SINGH, Suneet; ESTEVE ROTHENBERG, Christian. DCTPQ: Dynamic Cloud Gaming Traffic Prioritization Using Machine Learning and Multi-Queueing for QoE Enhancement. In: SIMPÓSIO BRASILEIRO DE REDES DE COMPUTADORES E SISTEMAS DISTRIBUÍDOS (SBRC), 43. , 2025, Natal/RN. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2025 . p. 476-489. ISSN 2177-9384. DOI: https://doi.org/10.5753/sbrc.2025.6266.