Algoritmos de Controle de Congestionamento Justos e Eficientes para Aplicações TCP em Redes Sensíveis a Perda de Pacotes e a Atrasos
Resumo
À medida que o número de dispositivos conectados à Internet aumenta, a resposta das aplicações à competição por recursos de rede e, consequentemente, ao congestionamento, tornou-se uma questão crítica que afeta a qualidade do serviço e a experiência do usuário. Redes de próxima geração, como as além do 5G, 6G e redes de satélites de órbita terrestre baixa (LEO), enfrentam desafios adicionais devido à alta sensibilidade a atrasos e perdas de pacotes. Este artigo propõe três modelos de algoritmos de controle de congestionamento para o TCP (CCA), denominados Expolinear, Fracionário e Linear, que utilizam informações sobre perdas de pacotes para ajustar dinamicamente a janela de congestionamento (CWND), melhorando a eficiência e a adaptabilidade às condições variáveis da rede. Os algoritmos propostos são implementados como módulos do núcleo do Linux e são comparados com algoritmos tradicionais. Os modelos propostos demonstraram uma eficiência até dez vezes superior na taxa de transmissão em cenários com alta perda de pacotes, mantendo a equidade no uso da largura de banda entre fluxos concorrentes.
Palavras-chave:
TCP, Controle de Congestionamento, Redes de Nova Geração, Análise de Desempenho
Referências
Addanki, V., Apostolaki, M., Ghobadi, M., Schmid, S., & Vanbever, L. (2022). ABM: Active buffer management in datacenters. In Proceedings of the ACM SIGCOMM 2022 Conference, SIGCOMM ’22 (pp. 36–52). New York, NY, USA: Association for Computing Machinery.
Akhtar, Z., Nam, Y. S., Govindan, R., Rao, S., Chen, J., Katz-Bassett, E., Ribeiro, B., Zhan, J., & Zhang, H. (2018). Oboe: Auto-tuning video ABR algorithms to network conditions. In Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication, SIGCOMM ’18 (pp. 44–58). New York, NY, USA: Association for Computing Machinery.
Arslan, S., Li, Y., Kumar, G., & Dukkipati, N. (2023). Bolt: Sub-RTT congestion control for ultra-low latency. In 20th USENIX Symposium on Networked Systems Design and Implementation (NSDI 23) (pp. 219–236). Boston, MA: USENIX Association.
Brakmo, L. S., O’Malley, S. W., & Peterson, L. L. (1994). TCP Vegas: New techniques for congestion detection and avoidance. In Proceedings of the Conference on Communications Architectures, Protocols and Applications, SIGCOMM ’94 (pp. 24–35). New York, NY, USA: Association for Computing Machinery.
Budhiraja, I., Kumar, N., Tyagi, S., Tanwar, S., Han, Z., Piran, M. J., & Suh, D. Y. (2021). A systematic review on NOMA variants for 5G and beyond. IEEE Access, 9, 85573–85644.
Cardwell, N., Cheng, Y., Gunn, C. S., Yeganeh, S. H., & Jacobson, V. (2016). BBR: Congestion-based congestion control. ACM Queue, 14, September–October, 20–53.
Cho, I., Jang, K., & Han, D. (2017). Credit-scheduled delay-bounded congestion control for datacenters. In Proceedings of the Conference of the ACM Special Interest Group on Data Communication, SIGCOMM ’17 (pp. 239–252). New York, NY, USA: Association for Computing Machinery.
Conde, J., Martínez, G., Reviriego, P., & Hernandez, J. A. (2024). Round trip times (RTTs): Comparing terrestrial and LEO satellite networks. In 2024 27th Conference on Innovation in Clouds, Internet and Networks (ICIN) (pp. 42–46).
Ha, S., Rhee, I., & Xu, L. (2008). CUBIC: A new TCP-friendly high-speed TCP variant. SIGOPS Operating Systems Review, 42(5), 64–74.
Hegde, P., de Veciana, G., & Mokhtari, A. (2023). Network adaptive federated learning: Congestion and lossy compression.
Hemminger, S., et al. (2005). Network emulation with NetEm. In Linux.conf.au (Vol. 5, pp. 2005).
Li, W., Wu, Z., Zhang, B., Zheng, L., Zhao, W., Zou, J., & Sun, S. (2024). In 2024 IEEE 30th International Conference on Telecommunications (ICT) (pp. 01–06).
Padhye, J., Firoiu, V., Towsley, D. F., & Kurose, J. F. (2000). Modeling TCP Reno performance: A simple model and its empirical validation. IEEE/ACM Transactions on Networking, 8(2), 133–145.
Saltzer, J. H., Reed, D. P., & Clark, D. D. (1984). End-to-end arguments in system design. ACM Transactions on Computer Systems, 2(4), 277–288.
Winstein, K., & Balakrishnan, H. (2013). TCP ex machina: Computer-generated congestion control. SIGCOMM Computer Communication Review, 43(4), 123–134.
Xiao, K., Mao, S., & Tugnait, J. K. (2019). TCP-DRINC: Smart congestion control based on deep reinforcement learning. IEEE Access, 7, 11892–11904.
Yang, W., Liu, Y., Tian, C., Jiang, J., & Guo, L. (2023). Gemini: Divide-and-conquer for practical learning-based internet congestion control. In IEEE INFOCOM 2023 – IEEE Conference on Computer Communications (pp. 1–10).
Yen, C.-Y., Abbasloo, S., & Chao, H. J. (2023). Computers can learn from the heuristic designs and master internet congestion control. In Proceedings of the ACM SIGCOMM 2023 Conference, ACM SIGCOMM ’23 (pp. 255–274). New York, NY, USA: Association for Computing Machinery.
Zhang, J., & Yeh, E. (2024). Congestion-aware routing and content placement in elastic cache networks. In IEEE INFOCOM 2024 – IEEE Conference on Computer Communications (pp. 1471–1480).
Akhtar, Z., Nam, Y. S., Govindan, R., Rao, S., Chen, J., Katz-Bassett, E., Ribeiro, B., Zhan, J., & Zhang, H. (2018). Oboe: Auto-tuning video ABR algorithms to network conditions. In Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication, SIGCOMM ’18 (pp. 44–58). New York, NY, USA: Association for Computing Machinery.
Arslan, S., Li, Y., Kumar, G., & Dukkipati, N. (2023). Bolt: Sub-RTT congestion control for ultra-low latency. In 20th USENIX Symposium on Networked Systems Design and Implementation (NSDI 23) (pp. 219–236). Boston, MA: USENIX Association.
Brakmo, L. S., O’Malley, S. W., & Peterson, L. L. (1994). TCP Vegas: New techniques for congestion detection and avoidance. In Proceedings of the Conference on Communications Architectures, Protocols and Applications, SIGCOMM ’94 (pp. 24–35). New York, NY, USA: Association for Computing Machinery.
Budhiraja, I., Kumar, N., Tyagi, S., Tanwar, S., Han, Z., Piran, M. J., & Suh, D. Y. (2021). A systematic review on NOMA variants for 5G and beyond. IEEE Access, 9, 85573–85644.
Cardwell, N., Cheng, Y., Gunn, C. S., Yeganeh, S. H., & Jacobson, V. (2016). BBR: Congestion-based congestion control. ACM Queue, 14, September–October, 20–53.
Cho, I., Jang, K., & Han, D. (2017). Credit-scheduled delay-bounded congestion control for datacenters. In Proceedings of the Conference of the ACM Special Interest Group on Data Communication, SIGCOMM ’17 (pp. 239–252). New York, NY, USA: Association for Computing Machinery.
Conde, J., Martínez, G., Reviriego, P., & Hernandez, J. A. (2024). Round trip times (RTTs): Comparing terrestrial and LEO satellite networks. In 2024 27th Conference on Innovation in Clouds, Internet and Networks (ICIN) (pp. 42–46).
Ha, S., Rhee, I., & Xu, L. (2008). CUBIC: A new TCP-friendly high-speed TCP variant. SIGOPS Operating Systems Review, 42(5), 64–74.
Hegde, P., de Veciana, G., & Mokhtari, A. (2023). Network adaptive federated learning: Congestion and lossy compression.
Hemminger, S., et al. (2005). Network emulation with NetEm. In Linux.conf.au (Vol. 5, pp. 2005).
Li, W., Wu, Z., Zhang, B., Zheng, L., Zhao, W., Zou, J., & Sun, S. (2024). In 2024 IEEE 30th International Conference on Telecommunications (ICT) (pp. 01–06).
Padhye, J., Firoiu, V., Towsley, D. F., & Kurose, J. F. (2000). Modeling TCP Reno performance: A simple model and its empirical validation. IEEE/ACM Transactions on Networking, 8(2), 133–145.
Saltzer, J. H., Reed, D. P., & Clark, D. D. (1984). End-to-end arguments in system design. ACM Transactions on Computer Systems, 2(4), 277–288.
Winstein, K., & Balakrishnan, H. (2013). TCP ex machina: Computer-generated congestion control. SIGCOMM Computer Communication Review, 43(4), 123–134.
Xiao, K., Mao, S., & Tugnait, J. K. (2019). TCP-DRINC: Smart congestion control based on deep reinforcement learning. IEEE Access, 7, 11892–11904.
Yang, W., Liu, Y., Tian, C., Jiang, J., & Guo, L. (2023). Gemini: Divide-and-conquer for practical learning-based internet congestion control. In IEEE INFOCOM 2023 – IEEE Conference on Computer Communications (pp. 1–10).
Yen, C.-Y., Abbasloo, S., & Chao, H. J. (2023). Computers can learn from the heuristic designs and master internet congestion control. In Proceedings of the ACM SIGCOMM 2023 Conference, ACM SIGCOMM ’23 (pp. 255–274). New York, NY, USA: Association for Computing Machinery.
Zhang, J., & Yeh, E. (2024). Congestion-aware routing and content placement in elastic cache networks. In IEEE INFOCOM 2024 – IEEE Conference on Computer Communications (pp. 1471–1480).
Publicado
19/05/2025
Como Citar
DA COSTA MADEIRA, Marcos Vinícius; MENEZES FERRAZANI MATTOS, Diogo.
Algoritmos de Controle de Congestionamento Justos e Eficientes para Aplicações TCP em Redes Sensíveis a Perda de Pacotes e a Atrasos. In: SIMPÓSIO BRASILEIRO DE REDES DE COMPUTADORES E SISTEMAS DISTRIBUÍDOS (SBRC), 43. , 2025, Natal/RN.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2025
.
p. 504-517.
ISSN 2177-9384.
DOI: https://doi.org/10.5753/sbrc.2025.6290.
