Topology Control and Opportunistic Routing for Underwater Acoustic Sensor Networks

  • Rodolfo Coutinho UFMG / University of Ottawa
  • Azzedine Boukerche University of Ottawa
  • Luiz Vieira UFMG
  • Antonio Loureiro UFMG

Resumo


Underwater wireless sensor networks (UWSNs) are emerging to enable large-scale ocean monitoring with the goal of reducing the human knowledge gap of underwater environments and the life underneath them. However, several challenges still limit the deployments of UWSNs to small-scale and confined underwater monitoring applications. The goals of this thesis are to investigate and develop cutting-edge models, algorithms and protocols in order to tackle the fundamental data communication challenge in the underwater environment and advance the state-of-the-art towards feasible large-scale deployment of UWSN applications.

Referências

Al-Bzoor, M., Zhu, Y., Liu, J., Reda, A., Cui, J.-H., and Rajasekaran, S. (2012). Adaptive power controlled routing for underwater sensor networks. In Proc. of the WASA, volume 7405, pages 549–560.

Cattani, M., Loukas, A., Zimmerling, M., Zuniga, M., and Langendoen, K. (2016). Staffetta: Smart duty-cycling for opportunistic data collection. In Proc. of the 14th ACM SenSys, pages 56–69.

Ghadimi, E., Landsiedel, O., Soldati, P., Duquennoy, S., and Johansson, M. (2014). Opportunistic routing in low duty-cycle wireless sensor networks. ACM Trans. Sen. Netw., 10(4):67:1–67:39.

Jornet, J. M., Stojanovic, M., and Zorzi, M. (2008). Focused beam routing protocol for underwater acoustic networks. In Proc. of the 3rd ACM WuWNet, pages 75–82.

Lee, U., Wang, P., Noh, Y., Vieira, L. F. M., Gerla, M., and Cui, J. H. (2010). Pressure routing for underwater sensor networks. In Proc. of the IEEE INFOCOM, pages 1–9.

Lucani, D. E., Medard, M., and Stojanovic, M. (2008). Underwater acoustic networks: Channel models and network coding based lower bound to transmission power for multicast. IEEE Journal on Selected Areas in Communications, 26(9):1708–1719.

Noh, Y., Lee, U., Wang, P., Choi, B. S. C., and Gerla, M. (2013). Vapr: Void-aware IEEE Trans. on Mobile Comput., pressure routing for underwater sensor networks. 12(5):895–908.

O'Rourke, M., Basha, E., and Detweiler, C. (2012). Multi-modal communications in underwater sensor networks using depth adjustment. In Proc. of the 7th ACM WUWNET, pages 31:1–31:5.

Ponnavaikko, P., Wilson, S. K., Stojanovic, M., Holliday, J., and Yassin, K. (2017). Delayconstrained energy optimization in high-latency sensor networks. IEEE Sensors Journal, 17(13):4287–4298.

Vieira, L. F. M. (2012). Performance and trade-offs of opportunistic routing in underwater networks. In Proc. of the IEEE WCNC, pages 2911–2915.

Xie, P., Zhou, Z., Peng, Z., Cui, J.-H., and Shi, Z. (2009). Void avoidance in threedimensional mobile underwater sensor networks. In Proc. of the WASA, volume 5682, pages 305–314. Springer.

Xu, J., Li, K., Min, G., Lin, K., and Qu, W. (2012). Energy-efcient tree-based multipath IEEE Transactions on Parallel and power control for underwater sensor networks. Distributed Systems, 23(11):2107–2116.

Yan, H., Shi, Z. J., and Cui, J.-H. (2008). DBR: depth-based routing for underwater sensor networks. In Proceedings of the 7th Int'l IFIP-TC6 NETWORKING, pages 72–86.

Zuba, M., Fagan, M., Shi, Z., and Cui, J. H. (2014). A resilient pressure routing scheme for underwater acoustic networks. In Proc. of the IEEE Globecom, pages 637–642.
Publicado
06/05/2018
COUTINHO, Rodolfo; BOUKERCHE, Azzedine; VIEIRA, Luiz; LOUREIRO, Antonio. Topology Control and Opportunistic Routing for Underwater Acoustic Sensor Networks. In: CONCURSO DE TESES E DISSERTAÇÕES - SIMPÓSIO BRASILEIRO DE REDES DE COMPUTADORES E SISTEMAS DISTRIBUÍDOS (SBRC), 1. , 2018, Campos do Jordão. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2018 . ISSN 2177-9384. DOI: https://doi.org/10.5753/sbrc_estendido.2018.14179.