Admission Control and Resource Allocation in 5G Network Slicing
Abstract
This paper summarizes the research in the master thesis entitled "Admission Control and Resource Allocation in 5G Network Slicing". We propose two solutions, SARA and DSARA, based on Reinforcement Learning algorithms to learn the admission policy that optimizes the profit of providers. Resource allocation considers the QoS requirements. Results show the outstanding performance of our solutions to 5G Network Slicing in relation to profit and resource utilization.References
Agarwal, S., Malandrino, F., Chiasserini, C. F., and De, S. (2019). Vnf placement and IEEE/ACM resource allocation for the support of vertical services in 5g networks. Transactions on Networking, 27(1):433–446.
Bega, D., Gramaglia, M., Banchs, A., Sciancalepore, V., and Costa-Pérez, X. (2019). A machine learning approach to 5g infrastructure market optimization. IEEE Transactions on Mobile Computing, 19(3):498–512.
D’Oro, S., Bonati, L., Restuccia, F., Polese, M., Zorzi, M., and Melodia, T. (2020). Sledge: Network slicing at the edge. arXiv preprint arXiv:2005.00886.
Etsi, N. (2013). Etsi gs nfv 002 v1. 1.1 network functions virtualization (nfv). Architecture and Framework: ONF.
Han, B., Sciancalepore, V., Costa-Perez, X., Feng, D., and Schotten, H. D. (2020). Multiservice-based network slicing orchestration with impatient tenants. IEEE Transactions on Wireless Communications, 19(7):5010–5024.
Sciancalepore, V., Costa, X., and Banchs, A. (2019). Rl-nsb: Reinforcement learningbased 5g network slice broker. IEEE/ACM Trans. on Networking, 27(4):1543–1557.
Spinnewyn, B., Isolani, P. H., Donato, C., Botero, J. F., and Latré, S. (2018). Coordinated service composition and embedding of 5g location-constrained network functions. IEEE TNSM, 15(4):1488–1502.
Villota, W. (2020). Admission control and resource allocation in 5g network slicing.
Zhang, Q., Liu, F., and Zeng, C. (2019). Adaptive interference-aware vnf placement for service-customized 5g network slices. In IEEE INFOCOM, pages 2449–2457. IEEE.
Bega, D., Gramaglia, M., Banchs, A., Sciancalepore, V., and Costa-Pérez, X. (2019). A machine learning approach to 5g infrastructure market optimization. IEEE Transactions on Mobile Computing, 19(3):498–512.
D’Oro, S., Bonati, L., Restuccia, F., Polese, M., Zorzi, M., and Melodia, T. (2020). Sledge: Network slicing at the edge. arXiv preprint arXiv:2005.00886.
Etsi, N. (2013). Etsi gs nfv 002 v1. 1.1 network functions virtualization (nfv). Architecture and Framework: ONF.
Han, B., Sciancalepore, V., Costa-Perez, X., Feng, D., and Schotten, H. D. (2020). Multiservice-based network slicing orchestration with impatient tenants. IEEE Transactions on Wireless Communications, 19(7):5010–5024.
Sciancalepore, V., Costa, X., and Banchs, A. (2019). Rl-nsb: Reinforcement learningbased 5g network slice broker. IEEE/ACM Trans. on Networking, 27(4):1543–1557.
Spinnewyn, B., Isolani, P. H., Donato, C., Botero, J. F., and Latré, S. (2018). Coordinated service composition and embedding of 5g location-constrained network functions. IEEE TNSM, 15(4):1488–1502.
Villota, W. (2020). Admission control and resource allocation in 5g network slicing.
Zhang, Q., Liu, F., and Zeng, C. (2019). Adaptive interference-aware vnf placement for service-customized 5g network slices. In IEEE INFOCOM, pages 2449–2457. IEEE.
Published
2021-08-16
How to Cite
JÁCOME, William F. Villota; RENDON, Oscar M. Caicedo; FONSECA, Nelson L. S. da.
Admission Control and Resource Allocation in 5G Network Slicing. In: DISSERTATION DIGEST - BRAZILIAN SYMPOSIUM ON COMPUTER NETWORKS AND DISTRIBUTED SYSTEMS (SBRC), 39. , 2021, Uberlândia.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2021
.
p. 89-96.
ISSN 2177-9384.
DOI: https://doi.org/10.5753/sbrc_estendido.2021.17158.
