Detecção de Pontos de Interesse e Predição de Próximo Local de Visita de Usuários Móveis com Base em Dados Esparsos

  • Cláudio Gustavo S. Capanema UFV
  • Fabrício A. Silva UFV

Abstract


The study on human mobility is an area that has recently gained prominence, both in academia and in the corporate world. Researchers seek to understand the behavior of individuals to advance innovative proposals for mobility solutions. On the other hand, companies are interested in knowing their users to offer better and more personalized services. Identifying points of interest (POIs), classifying them semantically and predicting the displacement of individuals are relevant tasks for the study of human mobility. This work presents an approach capable of performing the identification and classification of PoIs of individuals who have different routines. Additionally, a new approach to the semantic prediction of the next PoI to be visited is presented, encompassing the main state-of-the-art techniques. Unlike existing solutions, both proposals focus on sparse data (i.e., collected at low frequencies), which are more suitable for use in a large-scale production environment.

References

Capanema, C., Silva, and Aguiar, F. (2020a). Detecção de pontos de interesse e predição de próximo local de visita de usuários móveis com base em dados esparsos. Master’s thesis. Defendida em 20/03/2020.

Capanema, C., Silva, F. A., and Braga, T. M. (2019). Identificacão e classificacão de In Anais do XXXVII pontos de interesse individuais com base em dados esparsos. Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 15–28. SBC.

Capanema, C. G. S., Silva, F., and Silva, T. (2017). Dcluster: Um sistema para análise exploratória de grandes volumes de dados georreferenciados. In Satellite Events of the 32nd Brazilian Symposium on Databases (SBBD).

Capanema, C. G. S., Silva, F. A., and Silva, T. R. d. M. B. (2020b). Mfa-rnn: Uma rede neural recorrente para predição de próximo local de visita com base em dados esparsos. In Anais do XXXVIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 127–140. SBC.

Coimbra, G. T., Capanema, C. G. S., Silva, F. A., and Silva, T. R. B. (2019). Appel: Uma extensão do kepler para enriquecimento de dados geoespaciais. In GEOINFO, pages 176–181.

Gao, J., Sun, Y., Liu, W., and Yang, S. (2016). Predicting traffic congestions with global signatures discovered by frequent pattern mining. In 2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pages 554–560. IEEE.

Rathore, M. M., Ahmad, A., Paul, A., and Rho, S. (2016). Urban planning and building smart cities based on the internet of things using big data analytics. Computer Networks, 101:63–80.

Shannon, C. E. (1948). A mathematical theory of communication. Bell system technical journal, 27(3):379–423.

Yao, Z., Fu, Y., Liu, B., Liu, Y., and Xiong, H. (2016). Poi recommendation: A temporal matching between poi popularity and user regularity. In 2016 IEEE 16th international conference on data mining (ICDM), pages 549–558. IEEE.
Published
2021-08-16
CAPANEMA, Cláudio Gustavo S.; SILVA, Fabrício A.. Detecção de Pontos de Interesse e Predição de Próximo Local de Visita de Usuários Móveis com Base em Dados Esparsos. In: DISSERTATION DIGEST - BRAZILIAN SYMPOSIUM ON COMPUTER NETWORKS AND DISTRIBUTED SYSTEMS (SBRC), 39. , 2021, Uberlândia. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2021 . p. 129-136. ISSN 2177-9384. DOI: https://doi.org/10.5753/sbrc_estendido.2021.17163.