MiniNetFED: A Tool for Emulation and Analysis of Federated Learning with Heterogeneous Devices

  • Johann Jakob Schmitz Bastos UFES
  • Eduardo Montagner de Moraes Sarmento UFES
  • Rodolfo da Silva Villaça UFES
  • Vinícius F. S. Mota UFES

Abstract


This paper presents the MiniNetFed, an emulation tool for analyzing federated learning algorithms. The MiniNetFed enables the emulation of an environment with heterogeneous devices, differing in processing power, memory, and network capability, for conducting federated learning experiments. The tool also allows users to define: i) data partition formats among devices; ii) client selection policies; iii) model aggregation functions; iv) pre-trained models for major datasets used in the literature; and v) graphical visualizations of key performance metrics. Finally, besides its educational potential, the MiniNetFed is designed so that new algorithms and models can be easily extended, allowing researchers to implement and evaluate their proposals.

References

(2013). Wearable computing: Classification of body postures and movements (puc-rio). [link]. Data Set Source: Pontifical Catholic University of Rio de Janeiro (PUC-Rio).

Chen, H., Huang, S., Zhang, D., Xiao, M., Skoglund, M., and Poor, H. V. (2022). Federated learning over wireless iot networks with optimized communication and resources. IEEE Internet of Things Journal, pages 1–1.

Hosseinzadeh, M., Hudson, N., Heshmati, S., and Khamfroush, H. (2022). Communication-loss trade-off in federated learning: A distributed client selection algorithm. In IEEE Consumer Communications & Networking Conf., pages 1–6.

Malekzadeh, M., Clegg, R. G., Cavallaro, A., and Haddadi, H. (2018). Protecting sensory data against sensitive inferences. In Privacy by Design in Distributed Systems. ACM.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and y Arcas, B. A. (2017). Communication-efficient learning of deep networks from decentralized data. In Artificial Intelligence and Statistics, pages 1273–1282. PMLR.

Minerva, R., Biru, A., and Rotondi, D. (2015). Towards a definition of the internet of things (iot). IEEE Internet Initiative, 1(1):1–86.

Peuster, M., Karl, H., and van Rossem, S. (2016). Medicine: Rapid prototyping of production-ready network services in multi-pop environments. In IEEE Conference on Network Function Virtualization and Software Defined Networks, pages 148–153.

Sarmento, E. M. M. et al. (2024). Privacidade e comunicação eficiente em aprendizado federado: Uma abordagem utilizando estruturas de dados probabilísticas e seleção de clientes. In Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos.

Souza, A. et al. (2023). Dispositivos, eu escolho vocês: Seleção de clientes adaptativa para comunicação eficiente em aprendizado federado. In Anais do XLI Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 1–14. SBC.

Tran, N. H., Bao, W., Zomaya, A., Nguyen, M. N. H., and Hong, C. S. (2019). Federated learning over wireless networks: Optimization model design and analysis. In IEEE INFOCOM 2019 - IEEE Conference on Computer Communications, pages 1387–1395.
Published
2024-05-20
BASTOS, Johann Jakob Schmitz; SARMENTO, Eduardo Montagner de Moraes; VILLAÇA, Rodolfo da Silva; MOTA, Vinícius F. S.. MiniNetFED: A Tool for Emulation and Analysis of Federated Learning with Heterogeneous Devices. In: DEMO SESSION - BRAZILIAN SYMPOSIUM ON COMPUTER NETWORKS AND DISTRIBUTED SYSTEMS (SBRC), 42. , 2024, Niterói/RJ. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024 . p. 57-64. ISSN 2177-9384. DOI: https://doi.org/10.5753/sbrc_estendido.2024.3226.