Towards Time-Sensitive Networking Traffic Generation with PIPO-TG

  • Filipo Gabert Costa UNICAMP
  • Francisco Germano Vogt UNICAMP
  • Fabricio Rodriguez UNICAMP
  • Marcelo Luizelli Unipampa
  • Christian Esteve Rothenberg UNICAMP

Resumo


Realistic traffic simulation is essential for evaluating network performance, security, and efficiency. However, modern network environments demand testers with high performance, scalability, precision, flexibility, and costeffectiveness, which current solutions struggle to achieve simultaneously. PIPO-TG has been proposed to overcome these constraints as a Tofino-based traffic generator tailored for high-performance parametrizable traffic experiments. In this work, we extend PIPO-TG capabilities to support an even more challenging scenario, a delay distribution on a nanosecond scale. We reproduce timesensitive networking (TSN) delay traces measured in a commercial TSN bridge. We demonstrate the flexibility, accuracy, and performance of PIPO-TG, making it an ideal tool for network testing in network research and experimentation.

Referências

Biondi, P. (2011). Scapy. Available: [link] [Acces: April 05, 2024].

Botta, A., Dainotti, A., and Pescapé, A. (2010). Do you trust your software-based traffic generator? IEEE Communications Magazine, 48(9):158–165.

Costa, F. G., Vogt, F., Rodriguez, F., de Castro, A. G., Luizelli, M. C., and Rothenberg, C. E. (2024). Pipo-tg: Parameterizable high-performance traffic generation. In To appear in IEEE/IFIP Network Operations and Management Symposium (NOMS) 2024.

de Almeida, L. C., da Silva, J. L., Lins, R. P., Maciel Jr, P. D., Pasquini, R., and Verdi, F. L. (2023). Wave-um gerador de cargas múltiplas para experimentação em redes de computadores. In Anais Estendidos do XLI Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 9–16. SBC.

DETERMINISTIC6G (2023). Deterministic6g deliverable 4.1, “deterministic6g detcom simulator framework release 1”. Online. Available: [link] [Acces: April 05, 2024].

Emmerich, P., Gallenmüller, S., Raumer, D., Wohlfart, F., and Carle, G. (2015). Moongen: A scriptable high-speed packet generator. In Proceedings of the 2015 Internet Measurement Conference, pages 275–287.

*Hobbit* (1995). Netcat. Available: [link] [Acces: March 20, 2024].

Jones, R. (1996). Netperf. hewlett-packard. Available: [link] [Acces: June 26, 2023].

Kundel, R., Rizk, A., and Koldehofe, B. (2020). Microbursts in software and hardware-based traffic load generation. In NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium, pages 1–2.

Lindner, S., Häberle, M., and Menth, M. (2023). P4tg: 1 tb/s traffic generation for ethernet/ip networks. IEEE Access, 11:17525–17535.

Liu, W.-x., Liang, C., Cui, Y., Cai, J., and Luo, J.-m. (2022). Programmable data plane intelligence: advances, opportunities, and challenges. IEEE Network.

Mortimer, M. (2018). iperf3 documentation.

Mosberger, D. and Jin, T. (1998). Httperf—a tool for measuring web server performance. SIGMETRICS Perform. Eval. Rev., 26(3):31–37.

TRex, T. (2023). Trex realistic traffic generator. Available: [link] [Acces: March 20, 2024].

Zhou, Y., Xi, Z., Zhang, D., Wang, Y., Wang, J., Xu, M., and Wu, J. (2019). Hypertester: high-performance network testing driven by programmable switches. In Proceedings of the 15th International Conference on Emerging Networking Experiments And Technologies, pages 30–43.
Publicado
20/05/2024
COSTA, Filipo Gabert; VOGT, Francisco Germano; RODRIGUEZ, Fabricio; LUIZELLI, Marcelo; ROTHENBERG, Christian Esteve. Towards Time-Sensitive Networking Traffic Generation with PIPO-TG. In: SALÃO DE FERRAMENTAS - SIMPÓSIO BRASILEIRO DE REDES DE COMPUTADORES E SISTEMAS DISTRIBUÍDOS (SBRC), 42. , 2024, Niterói/RJ. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024 . p. 73-80. ISSN 2177-9384. DOI: https://doi.org/10.5753/sbrc_estendido.2024.3381.