A New WAVE: Exploring New Load Pattern Models for Experimentation in Computer Networks

Resumo


Experimentation is a crucial step in many types of scientific research, enabling researchers to evaluate the validity of their hypotheses. In computer networks, one of the key challenges during the experimentation phase is finding load generators capable of accurately modeling diverse traffic patterns for various applications. To address this issue, our previous work introduced a load generator designed to generate load based on real application behavior. In this sense, this work improves the WAVE Workload Assay for Verified Experiments. A new WAVE version can generate loads for three distinct patterns: sinusoid, flashcrowd, and step. Additionally, it now supports microbursts and container-based environments.

Palavras-chave: Traffic Patterns, Load Generator, Computer Networks Experimentation

Referências

Almeida, L., Silva, J., Lins, R., Maciel Jr., P. D., Pasquini, R., and Verdi, F. (2023). WAVE - Um gerador de cargas múltiplas para experimentação em redes de computadores. In Anais Estendidos do 41o Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 9–16, Brasil. SBC.

Ari, I., Hong, B., Miller, E., Brandt, S., and Long, D. (2003). Managing flash crowds on the internet. In MASCOTS 2003, pages 246–249.

Canel, C. et al. (2024). Understanding incast bursts in modern datacenters. In Proceedings of the 2024 ACM on Internet Measurement Conference, IMC ’24, page 674–680, New York, NY, USA. Association for Computing Machinery.

Chen, X. and other (2018). Catching the microburst culprits with snappy. In Proceedings of the Afternoon Workshop on Self-Driving Networks, SelfDN 2018, page 22–28, New York, NY, USA. Association for Computing Machinery.

Hafez, N. A., Hassan, M. S., and Landolsi, T. (2023). Reinforcement learning-based rate adaptation in dynamic video streaming. Telecommunication Systems, 83(4):395–407.

Kim, M. and Chung, K. (2022). Reinforcement Learning-Based adaptive streaming scheme with edge computing assistance. Sensors (Basel), 22(6).

Kundel, R. et al. (2020). P4STA: High Performance Packet Timestamping with Programmable Packet Processors. In NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium, pages 1–9.

Lin, H., Shen, Z., Zhou, H., Liu, X., Zhang, L., Xiao, G., and Cheng, Z. (2020). Knn-q learning algorithm of bitrate adaptation for video streaming over http. In 2020 Information Communication Technologies Conference (ICTC), pages 302–306.

Miranda, G. et al. (2022). Evaluating Time-Sensitive Networking Features on Open Testbeds. In IEEE INFOCOM 2022 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pages 1–2.

Sandvine (2023). Global Internet Phenomena. Technical report, Sandvine.

Soares, R., Ferreira, G., Solis, P., and Caetano, M. (2020). Eros-5: Gerador de tráfego sintético para redes 5g. In Anais Estendidos do 38o Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 41–48, Brasil. SBC.

Spang, B. et al. (2023). Sammy: Smoothing video traffic to be a friendly internet neighbor. In Proceedings of the ACM SIGCOMM 2023 Conference, page 754–768, New York, NY, USA. Association for Computing Machinery.

Stadler, R., Pasquini, R., and Fodor, V. (2017). Learning from Network Device Statistics. Journal of Network and Systems Management, 25(4):672–698.

Wei, X. et al. (2021). Reinforcement learning-based QoE-oriented dynamic adaptive streaming framework. Information Sciences, 569:786–803.

Woodruff, J., Moore, A. W., and Zilberman, N. (2020). Measuring burstiness in data center applications. In Proceedings of the 2019 Workshop on Buffer Sizing, BS ’19, New York, NY, USA. Association for Computing Machinery.
Publicado
19/05/2025
BEUTTENMULLER, Danilo C.; VALÉRIO, Matheus F. de A.; SILVA, Caio Luiz L. T.; DA SILVA, Icaro M.; MACIEL JR., Paulo Ditarso; DE ALMEIDA, Leandro C.. A New WAVE: Exploring New Load Pattern Models for Experimentation in Computer Networks. In: SALÃO DE FERRAMENTAS - SIMPÓSIO BRASILEIRO DE REDES DE COMPUTADORES E SISTEMAS DISTRIBUÍDOS (SBRC), 43. , 2025, Natal/RN. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2025 . p. 11-22. ISSN 2177-9384. DOI: https://doi.org/10.5753/sbrc_estendido.2025.6301.