Carbono 21: Promoting Forestation Through Digital Assets
Resumo
Despite its environmental benefits, forestation is often overlooked in favor of more profitable crops with negative environmental impacts. In response, this work promotes forestation through tokenization, creating financial incentives for landowners who plant trees. Forested areas and green assets are transformed into Non-Fungible Tokens (NFTs) on a consortium blockchain. Their metadata is automatically updated via satellite-based deforestation tracking systems, something unseen in the literature. The solution also contributes to distributed systems and the environment by proposing several transparency mechanisms – often lacking in forestation efforts and permissioned blockchains –, enabling authorities to audit the transaction and utilization of green assets.
Referências
Antunes, C. (2023). Caubóis do carbono loteiam a amazônia. Sumaúma.
Bitmo (2025). Bitmo. [link].
Brazilian Government (2020). Estatísticas e Dados Abertos dos Imóveis Rurais. [link].
BscScan (2025). Treedefi token. [link].
Carbonext (2025). Seja produtor. [link].
Chakraborty, S., Anand, A., Kalash, D., and Srivastava, A. (2022). Transparency in carbon credit by automating data-management using blockchain. In 2022 IEEE ICBDS, pages 1–5.
Climatecoin (n.d.). White paper. [link].
Correia, P. H. B. and Simplicio, M. A. (2024). Carbono 21: Promovendo florestamento utilizando tokenização. Master’s thesis, University of São Paulo.
EcoRegistry (2025). EcoRegistry. [link].
Etherscan (2025). Moss. [link].
Figorilli, S., Antonucci, F., Costa, C., Pallottino, F., Raso, L., Castiglione, M., Pinci, E., Del Vecchio, D., Colle, G., Proto, A. R., et al. (2018). A blockchain implementation prototype for the electronic open source traceability of wood along the whole supply chain. Sensors, 18(9):3133.
Flowcarbon (2024). Flowcarbon. [link].
ForestCoin (n.d.). White paper. [link].
Franke, L., Schletz, M., and Salomo, S. (2020). Designing a blockchain model for the Paris agreement’s carbon market mechanism. Sustainability, 12(3):1068.
Harfouche, A. and Nakhle, F. (2023). Artificial intelligence, blockchain, and extended reality: Emerging digital technologies to turn the tide on illegal logging and illegal wood trade. Ann. of Silvicultural Res., 48(1):12–21.
Haya, B. K., Evans, S., Brown, L., Bukoski, J., Butsic, V., Cabiyo, B., Jacobson, R., Kerr, A., Potts, M., and Sanchez, D. L. (2023). Comprehensive review of carbon quantification by improved forest management offset protocols. Frontiers in Forests and Global Change, 6:958879.
IBAMA (n.d.). Consulta de autuações ambientais e embargos. [link].
Kimura, L. T., Shiraishi, F. K., Andrade, E. R., Carvalho, T. C. M. B., and Simplicio, M. A. (2024). Amazon biobank: Assessing the implementation of a blockchain-based genomic database. IEEE Access, 12:9632–9647.
MapBiomas (n.d.). MapBiomas Alerta. [link].
Ministério da Justiça e Segurança Pública (n.d.). Programa Brasil Mais. [link].
Moss (n.d.). White paper. [link].
OFP (2023). White paper. [link].
Robinson, P. and Brainard, J. (2019). Anonymous state pinning for private blockchains. In 2019 TrustCom/BigDataSE, pages 827–834.
Ronquim, C. C. (2010). Queimadas na colheita da cana-de-açúcar: Impactos ambientais, sociais e econômicos. Embrapa.
Treedefi (n.d.). White paper. [link].
Tustt (2025). Trustt green. [link].
Vilkov, A. and Tian, G. (2023). Blockchain’s scope and purpose in carbon markets: A systematic literature review. Sustainability, 15(11).
WWF (n.d.). Soy. [link].
