TrendsBot: Verificando a veracidade das mensagens do Telegram utilizando Data Stream

  • Wellison Raul Mariz Santos Universidade Federal de Pernambuco
  • Marcus Rafael Xavier UFPE
  • David Carlos Pereira da Cunha UFPE
  • Jose Carlos Ferreira ITEP
  • Daniel A. R. Adauto Federal University of Pernambuco (UFPE)
  • Carlos A. G. Ferraz UFPE

Resumo


A notícia falsa, conhecida como Fake News, é criada e compartilhada em larga escala por meio de aplicativos como WhatsApp e Telegram. O compartilhamento em massa dessas notícias nesses aplicativos é causado pelo impacto do título, juntamente com a facilidade de compartilhamento e também pela falta de um método de verificação. Portanto, fica evidente a necessidade de uma ferramenta que facilite o julgamento da integridade das notícias. Este trabalho propõe o TrendsBot: um bot para Telegram capaz de coletar evidências através do Twitter e portais de notícias, dando suporte aos usuários em uma verificação rápida dessas notícias. O bot consulta as palavras-chave através de áudios transcritos ou textos enviados a um grupo, recolhe evidências relacionadas com essas palavras e as relaciona com os termos da notícia.

Referências

(2019). Mtproto mobile protocol. https://core.telegram.org/mtproto. Acessado em 23 de março de 2019.

Buntain, C. and Golbeck, J. (2017). Automatically Identifying Fake News in PopularTwitter Threads.Proceedings - 2nd IEEE International Conference on Smart Cloud,SmartCloud 2017, pages 208–215.

Conroy, N. J., Rubin, V. L., and Chen, Y. (2015). Automatic deception detection: Methodsfor finding fake news. ASIST ’15, pages 82:1–82:4, Silver Springs, MD, USA. Ame-rican Society for Information Science.

Della Vedova, M. L., Tacchini, E., Moret, S., Ballarin, G., DiPierro, M., and de Alfaro, L.(2018). Automatic online fake news detection combining content and social signals.In2018 22nd Conference of Open Innovations Association (FRUCT), pages 272–279.

Dey, A., Rafi, R. Z., Parash, S. H., Arko, S. K., and Chakrabarty, A. (2018). Fake NewsPattern Recognition using Linguistic Analysis. pages 305–309.

Eslahi, M., Salleh, R., and Anuar, N. B. (2013). Bots and botnets: An overview of charac-teristics, detection and challenges.Proceedings - 2012 IEEE International Conferenceon Control System, Computing and Engineering, ICCSCE 2012, pages 349–354.

Granik, M. and Mesyura, V. (2017). Fake news detection using naive bayes classifier. In2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKR-CON), pages 900–903. IEEE.

Hassan, N., Zhang, G., Arslan, F., Caraballo, J., Jimenez, D., Gawsane, S., Hasan, S.,Joseph, M., Kulkarni, A., Nayak, A. K., Sable, V., Li, C., and Tremayne, M. (2017).Claimbuster: The first-ever end-to-end fact-checking system.Proc. VLDB Endow.,(12):1945–1948.

Long, Y., Lu, Q., Xiang, R., Li, M., and Huang, C.-R. (2017). Fake news detectionthrough multi-perspective speaker profiles. pages 252–256.

Rubin, V. L., Chen, Y., and Conroy, N. J. (2015). Deception detection for news: Threetypes of fakes. ASIST ’15, pages 83:1–83:4, Silver Springs, MD, USA. AmericanSociety for Information Science.Sadikoglu, S. and Oktay, S. (2018). Identifying Fake News and Fake Users on Twitter.Procedia Computer Science, 120:204–212.

Sample, C., Columbia, L. L. C., and Indianapolis, I. (2019). A Model for Evaluating FakeNews. (February).Trends, I. T. (2017). The Economics of “Fake News”. (December).

Wang, P., Angarita, R., and Renna, I. (2018). Is this the Era of Misinformation yet?Combining Social Bots and Fake News to Deceive the Masses. InThe 2018 WebConference Companion, Lyon, France.

Zhang, X. and Ghorbani, A. A. (2019). An overview of online fake news: Characteriza-tion, detection, and discussion.Information Processing & Management, 56(March):1–26.
Publicado
06/05/2019
Como Citar

Selecione um Formato
SANTOS, Wellison Raul Mariz; XAVIER, Marcus Rafael; DA CUNHA, David Carlos Pereira; FERREIRA, Jose Carlos ; ADAUTO, Daniel A. R.; FERRAZ, Carlos A. G.. TrendsBot: Verificando a veracidade das mensagens do Telegram utilizando Data Stream. In: SALÃO DE FERRAMENTAS - SIMPÓSIO BRASILEIRO DE REDES DE COMPUTADORES E SISTEMAS DISTRIBUÍDOS (SBRC), 2. , 2019, Gramado. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2019 . p. 65-72. ISSN 2177-9384. DOI: https://doi.org/10.5753/sbrc_estendido.2019.7771.