RDNA: Arquitetura Definida por Resíduos para Redes de Data Centers

  • Alextian Bartholomeu Liberato Instituto Federal de Educação, Ciência e Tecnologia do Espírito Santo - IFES
  • Moises Ribeiro Universidade Federal do Espirito Santo
  • Magnos Martinello Universidade Federal do Espírito Santo - UFES

Resumo


Datacenter (DC) design has been moved towards the edge computing paradigm motivated by the need of bringing cloud resources closer to end users. However, the Software Defined Networking (SDN) architecture offers no clue to the design of Micro Datacenters (MDC) for meeting complex and stringent requirements from next generation 5G networks. This is because canonical SDN lacks a clear distinction between functional network parts, such as core and edge elements. Besides, there is no decoupling between the routing and the network policy. In the thesis, we introduce Residue Defined Networking Architecture (RDNA) as a new approach for enabling key features like ultra-reliable and low-latency communication in MDC networks. RDNA explores theprogrammability of Residues Number System (RNS) as a fundamental concept to define a minimalist forwarding model for core nodes. Instead of forwarding packets based on classical table lookup operations, core nodes are tableless switches that forward packets using merely remainder of the division (modulo) operations. By solving a residue congruence system representing a network topology, we found out the algorithms and their mathematical properties to design RDNAs routing system that (i) supports unicast and multicast communication,(ii) provides resilient routes with protection for the entire route, and (iii) is scalable for 2-tier Clos topologies. Experimental implementations on Mininet and NetFPGA SUME show that RDNA achieves 600 ns switching latency per hop with virtually no jitter at core nodes and sub-millisecond failure recovery time.

Referências

LIBERATO, A. B.; MARTINELLO, M.; GOMES, R. L.; BELDACHI, A. F.; HUGUES-SALAS, E.; VILLACA, R.; RIBEIRO, M. R. N.; KANELLOS, G.; NEJABATI, R.; GORODNIK, A.; SIMEONIDOU, D. RDNA: Residue-Defined Networking Architecture Enabling Ultra-Reliable Low-Latency Datacen-ters. IEEE Transactions on Network and Service Management (Volume: 15, Issue: 4, Dec. 2018. DOI: 10.1109/TNSM.2018.2876845.

MARTINELLO, M.; LIBERATO, A. B.; BELDACHI, A. F.; KONDEPU, K.; GOMES, Roberta L.; VILLACA, R.; RIBEIRO, M. R. N.; YAN, Y.; HUGUES-SALAS, E.; SIMEONIDOU, D. Programmable Residues Defined Networks for Edge Data Centres. 13th International Conference on Network and Service Ma-nagement (CNSM, 2017), Tokyo, Japan, Nov. 26-30, 2017.

GOMES, R. R.; DOMINICINI, C. K.; LIBERATO, A. B.; RIBEIRO, M. R. N.; MARTINELLO, M. Analytical Modeling Approach of Routing Deflection for Intra-domain Networks In: XXXVI Congresso da Sociedade Brasileira de Computação, 2016, Porto Alegre/RS. XV Workshop em Desempenho de Siste-mas Computacionais e de Comunicação, 2016.

LIBERATO, A. B.; MARTINELLO, M.; RIBEIRO, M. R. N.; MARQUEZ-BARJA, J. M.; KAMINSKI, N.; DASILVA, L. A. Dynamic Backhauling within Converged Networks In: ACM SIGCOMM, 2016, Florianópolis. ACM SIG-COMM Workshop on Fostering Latin-American Research in Data Communica-tion Networks (LANCOMM), 2016.

GOMES, R. R.; LIBERATO, A. B.; DOMINICINI, C. K.; RIBEIRO, M. R. N.; MARTINELLO, M. KAR: Key-for-Any-Route, a Resilient Routing System In: The 46th IEEE/IFIP International Conference on Dependable Systems and Networks (DSN'2016), 2016, Toulouse-France. The 2nd Workshop on Dependa-bility Issues on SDN and NFV (DISN), 2016.

LIMA, D. S. A.; GUIMARAES, R.; LIBERATO, A. B.; SPALLA, E. S.; VAS-SOLER, G. L.; MARTINELLO, M.; VILLACA, R. REUNI: Um algoritmo para REduzir tabelas de encaminhamento e UNIformizar a distribuição dos fluxos em redes com topologia hipercubo In: XXXIV Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC), 2016, Salvador-Bahia. XXXIV Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC), 2016.

LIMA, D. S. A.; GUIMARAES, R.; VASSOLER, G. L.; MARTINELLO, M.; VILLACA, R.; LIBERATO, A. B. Avaliação do Uso do OpenFlow na Recuperação de Falhas em Data Centers Centrados nos Servidores In: XIV Workshop em Desempenho de Sistemas Computacionais e de Comunicação (WPerformance 2015), 2015, Pernambuco-Recife. XXXIV Congresso da Soci-edade Brasileira de Computação -CSBC, 2015.

Casado, M., Koponen, T., Shenker, S., and Tootoonchian, A. (2012). Fabric: A retrospec-tive on evolving sdn. In Proceedings of the First Workshop on Hot Topics in Software Defined Networks, HotSDN '12, pages 85-90, New York, NY, USA. ACM.

da Silva, A. S., Smith, P., Mauthe, A., and Schaeffer-Filho, A. (2015). Resilience support in software-defined networking. Comput. Netw., 92(P1):189-207.

Dominicini, C. K., Vassoler, G. L., Meneses, L. F., Villaca, R. S., Ribeiro, M. R. N., and Martinello, M. (2017). Virtphy: Fully programmable nfv orchestration architec-ture for edge data centers. IEEE Transactions on Network and Service Management, 14(4):817-830.

Filsfils, E. C., Previdi, E. S., Systems, I. C., Decraene, B., Litkowski, S., Orange, Sha-kir, R., and Communications, J. (2014). Segment Routing Architecture. Internet-Draft Segment Routing Architecture draft-ietf-spring-segment-routing-00, Network Working Group. Standards Track.

Garner, H. L. (1959). The residue number system. Transactions on Electronic Computers, pages 140 -147.

Gomes, R. R., Liberato, A. B., Dominicini, C. K., Ribeiro, M. R. N., and Martinello, M. (2016). Kar: Key-for-any-route, a resilient routing system. In 2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshop (DSN-W), pages 120-127.

Hari, A., Lakshman, T. V., and Wilfong, G. (2015). Path switching: Reduced-state flow handling in sdn using path information. In Proceedings of the 11th ACM Conference on Emerging Networking Experiments and Technologies, CoNEXT '15, pages 36:1-36:7, New York, NY, USA. ACM.

Jia, W. K. (2014). A scalable multicast source routing architecture for data center networks. IEEE Journal on Selected Areas in Communications, 32(1):116-123.

Li, X. and Freedman, M. J. (2013). Scaling ip multicast on datacenter topologies. In Proceedings of the Ninth ACM Conference on Emerging Networking Experiments and Technologies, CoNEXT '13, pages 61-72, New York, NY, USA. ACM.

Mahalingam, M., Dutt, D., Duda, K., Agarwal, P., Kreeger, L., Sridhar, T., Bursell, M., and Wright, C. (2013). VXLAN: A Framework for Overlaying Virtualized Layer 2 Networks over Layer 3 Networks. Internet Draft.

Martinello, M., Liberato, A. B., Beldachi, A. F., Kondepu, K., Gomes, R. L., Villaca, R., Ribeiro, M. R. N., Yan, Y., Hugues-Salas, E., and Simeonidou, D. (2017). Program-mable residues defined networks for edge data centres. In 2017 13th International Conference on Network and Service Management (CNSM), pages 1-9.

Martinello, M., Ribeiro, M. R. N., De Oliveira, R. E. Z., and De Angelis Vitoi, R. (2014). Keyflow: A prototype for evolving SDN toward core network fabrics. IEEE Network, 28(2):12-19.

Multicast extensions to ospf. RFC 1584, https://tools.ietf.org/html/rfc1584.

Pansiot, J.-J. (2010). Multicast Routing on the Internet. ISTE.

Rosen, E., Viswanathan, A., and Callon, R. (2001). RFC 3031: Multiprotocol Label Switching Architecture. Technical report, IETF.

Shahbaz, M., Suresh, L., Feamster, N., Rexford, J., Rottenstreich, O., and Hira, M. (2018). Elmo: Source-Routed Multicast for Cloud Services. ArXiv e-prints.

Xia, W., Wen, Y., Foh, C. H., Niyato, D., and Xie, H. (2015). A survey on software-defined networking. IEEE Communications Surveys Tutorials, 17(1):27-51.
Publicado
26/09/2019
Como Citar

Selecione um Formato
LIBERATO, Alextian Bartholomeu; RIBEIRO, Moises; MARTINELLO, Magnos. RDNA: Arquitetura Definida por Resíduos para Redes de Data Centers. In: CONCURSO DE TESES E DISSERTAÇÕES - SIMPÓSIO BRASILEIRO DE REDES DE COMPUTADORES E SISTEMAS DISTRIBUÍDOS (SBRC), 2. , 2019, Gramado. Anais Estendidos do XXXVII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos. Porto Alegre: Sociedade Brasileira de Computação, sep. 2019 . p. 169-176. ISSN 2177-9384. DOI: https://doi.org/10.5753/sbrc_estendido.2019.7784.