PANDORA: Uma Plataforma Colaborativa para Transcrição Semiautomática de Boletins de Ocorrência Manuscritos
Resumo
O Boletim de Ocorrência (BO) policial constitui uma das principais fontes de informação para a fundamentação e fomentação de políticas públicas de segurança. Apesar da existência de aplicativos móveis para registro dos BOs, por razões múltiplas muitos oficiais de polícia ainda registram o BO de forma manuscrita. O registo do BO de forma manuscrita é um desafio para a coleta de informações, pois impõe uma etapa de transcrição do texto, que é uma tarefa árdua e pouco escalável. Este artigo propõe uma plataforma colaborativa, denominada PANDORA, que utiliza técnicas de Aprendizado de Máquina para realizar uma transcrição inicial do BO manuscrito para então ser modificada/melhorada, por meio da colaboração de múltiplos usuários especialistas. Uma avaliação com usuários especialistas e BOs reais foi executada.
Referências
Alves, R., David, J., Braga, R., Siqueira, K., Stroele, V., Barbosa, G., da Costa, J. P., and da Silva, I. (2022). Nutrinprice: uma plataforma colaborativa para apoiar a seleção de produtos alimentícios. In SBSC, pages 9–16. SBC.
Baek, Y., Lee, B., Han, D., Yun, S., and Lee, H. (2019). Character region awareness for text detection. In IEEE CVPR, pages 9365–9374. IEEE.
Bezerra, B. L. D., Zanchettin, C., and Braga de Andrade, V. (2012). A hybrid rnn model for cursive offline handwriting recognition. In SBRN, pages 113–118.
Blohm, I., Zogaj, S., Bretschneider, U., and Leimeister, J. M. (2018). How to manage crowdsourcing platforms effectively? Calif. Manag. Rev., 60(2):122–149.
Bonaccorso, G. (2018). Machine Learning Algorithms: Popular algorithms for data science and machine learning. Packt Publishing Ltd.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q., 13(3):319–340.
Faber, A., Rehm, S., Hernandez-Mendez, A., and Matthes, F. (2018). Collectively constructing the business ecosystem: Towards crowd-based modeling for platforms and infrastructures. In ICEIS, pages 158–172.
Granell, E. and Martínez-Hinarejos, C. D. (2016). A multimodal crowdsourcing framework for transcribing historical handwritten documents. In DocEng, pages 157–163. ACM.
Granell, E., Romero, V., and Martínez-Hinarejos, C. D. (2018). Multimodality, interactivity, and crowdsourcing for document transcription. Comput. Intell., 34(2):398–419.
Khan, S. H., Rahmani, H., Shah, S. A. A., and Bennamoun, M. (2018). A Guide to Convolutional Neural Networks for Computer Vision. Morgan & Claypool Publishers.
Kopittke, A. L. W. and Ramos, M. P. (2021). O que funciona e o que não funciona para reduzir homicídios no brasil: uma revisão sistemática. Rev. Adm. Pub., 55(2):414–437.
Likforman-Sulem, L., Hanimyan, A., and Faure, C. (1995). A hough based algorithm for extracting text lines in handwritten documents. In ICDAR, volume 2, pages 774–777.
Louloudis, G., Gatos, B., Pratikakis, I., and Halatsis, C. (2009). Text line and word segmentation of handwritten documents. Pattern recognition, 42(12):3169–3183.
Lourenço, V., Mann, P., Guimaraes, A., Paes, A., and de Oliveira, D. (2018). Towards safer (smart) cities: Discovering urban crime patterns using logic-based relational machine learning. In IJCNN, pages 1–8. IEEE.
Mitchell, T. M. and Mitchell, T. M. (1997). Machine learning. McGraw-hill NY. Nikitha, A., Geetha, J., and JayaLakshmi, D. (2020). Handwritten text recognition using deep learning. In RTEICT, pages 388–392.
Plamondon, R. and Srihari, S. (2000). Online and off-line handwriting recognition: a comprehensive survey. IEEE TPAMI, 22(1):63–84.
Purohit, A. and Chauhan, S. (2016). A literature survey on handwritten character recognition. International Journal of Computer Science and Information Technology, 7:1–5.
Reis, D., Melo, A., Coelho, A. L. V., and Furtado, V. (2006). Towards optimal police patrol routes with genetic algorithms. In IEEE ISI, pages 485–491.
SEPM (2015). Instruçao normativa pmerj/emg-pm-3 no 48 de 30 de dezembro de 2015.
Silva, G. (2021). Transcrição automática de textos em português escritos a mão usando deep learning. Bachelor’s thesis, Universidade Federal Fluminense, Brasil.
Tomic, M., Grzunov, L., and Ivanovic, M. D. (2021). Crowdsourcing transcription of historical manuscripts: Citizen science as a force of revealing historical evidence from croatian glagolitic manuscripts. Educ. Inf., 37(4):443–464.