Wikicrimes 15 anos depois: Ainda há razões para apostar em mapeamento colaborativo?
Resumo
Neste artigo reflito sobre o aprendizado obtido, tanto em aspectos científico-tecnológicos quanto sociais, a partir da implantação de um projeto de mapeamento colaborativo de crimes lançado há 15 anos. Essa reflexão visa ainda prospectar novos caminhos de pesquisa à luz de novos desenvolvimentos tecnológicos de forma a enfrentar desafios que ainda persistem, bem como discutir as implicações existentes para a gestão pública.
Referências
Beresford, A. and Stajano, F. (2003). “Location privacy in pervasive computing”, IEEE Pervasive computing, 2(1), pp:46–55.
Birkin LJ, Vasileiou E, Stagg HR. (2020). Citizen science in the time of COVID-19, Thorax 2021; 76, pp: 636-637.
Bravo, J.V.M.; Sluter, C.R. (2018). “O Mapeamento Colaborativo: seu surgimento, suas características e o funcionamento das plataformas”. Revista Brasileira de Geografia Física v.11, n.05 (2018), pp: 1902-1916.
Caminha, C. and Furtado, V. (2012). “Using Complex Networks for Mining Malicious Activities in a Collaborative Map”. J. Inf. Data Manag. 3(3): 179-194.
Coric, V and Gruteser, M. "Crowdsensing Maps of On-street Parking Spaces," (2013) IEEE Intl Conf. on Distributed Computing in Sensor Systems, pp: 115-122.
Dorn, H.; Törnros, T.; Zipf, A. (2015). “Quality Evaluation of VGI Using Authoritative Data – A comparison with land use data in Southern Germany”. ISPRS International Journal of Geoinformation 4, 1657-1671.
Elwood, S.; Goodchild, M. F.; Sui, D. Z. 2012. “Researching Volunteered Geographic Information: Spatial Data, Geographic Research, and New Social Practice”. Annals of the Association of American Geographers 102, 571-590
Furtado, E., Santiago, L., Furtado. V, (2011). Uma estratégia para análise da adoção de sistemas colaborativos baseada nas relações entre experiências de usuário, tecnologia e marketing. In Proc. of the 10th Brazilian Symposium on Human Factors in Computing Systems and the 5th Latin American Conference on Human-Computer Interaction (IHC+CLIHC). SBC, pp: 323–332.
Furtado, V. Caminha, de Oliveira, M. A, Vasconcelos Filho, J. E. and Silva, L. A. (2010) “Collective Intelligence in law enforcement: The WikiCrimes system”. Information Sciences, 180(1), p. 4-17.
Furtado, V. Caminha, C. Ayres, L. Santos, H. (2012). “Open Government and Citizen Participation in Law Enforcement via Crowd Mapping”. IEEE Intelligent Systems, 27(4): 63-69.
Furtado, V. Assunção, T. de Oliveira, M. Belchior, M. D’Orleans, J. (2009). “A method for Identifying Malicious Activity in Collaborative Systems with Maps”. ASONAM, pp: 334-337.
Furtado, E. and Furtado, V. (2013). “Closing the Gap between the Motivation of Users and the Design Requirements for Social Sites”. In: Latin-american Conference on Human Computer Interaction. 6th Proc. of Clihc. v. 1.
Ghinita, G.: Privacy for location-based services (2013). “Synthesis Lectures on Information Security”, Privacy & Trust, 4(1), pp:1–85.
Gómez-Barrón, J. P.; Manso-Callejo, M. A.; Alcarria, R.; Iturrioz, T. (2016). “Volunteered Geographic Information System Design: Project and Participation Guidelines”. International Journal of Geo-Information 5, pp:1-25.
Guo, B., Yu, Z., Zhou, X. and Zhang. D. (2014). "From participatory sensing to Mobile Crowd Sensing," 2014 IEEE International Conference on Pervasive Computing and Communication Workshops, pp. 593-598.
He, D. Chan, S. Guizani, M.,(2015). “User privacy and data trust worthiness in mobile crowd sensing”, IEEE Wireless Communications 22(1), pp: 28–34.
Kantarci, B, Mouftah, T. (2014), “Trustworthy sensing for public safety in cloud-centric internet of things”, IEEE Internet of Things Journal, 1(4)360–368.
Kantarci,B., arr, K, Pearsall, C. D., (2016). “SONATA: Social Network Assisted Trust worthiness Assurance in Smart City Crowd sensing”, Intl. J. of Distributed Systems and Technologies (IJDST) 7 (1) 59–78.
Li, X and Goldberg, D. W. (2018). “Toward a mobile crowdsensing system for road surface assessment”. Computers, Environment and Urban Systems, 69, pp: 51-62.
Liu, S.; Palen, L. 2010. “The New Cartographers: Crisis Map Mashups and the Emergence of Neogeographic Practice”. Cartography and Geographic Information Science 37, pp: 69-90.
Ogie, R.I: “Adopting incentive mechanisms for large-scale participation in mobile crowdsensing: from literature review to a conceptual framework”, (2016). Hum. Cent. Comput. Inf. Sci. pp: 6-24
Pinheiro, V. Furtado, V, Pequeno, T.H. and Nogueira, D.: (2010). “Natural Language Processing based on Semantic Inferentialism for extracting Crime Information from Text”. In Yang, C. Zeng, D., Wang, K., Sanfilippo, A.: Tsang, H., Day, H, Glasser, U., Brantingham, P. and Chen, H eds. Proc. of IEEE International Conference on Intelligence and Security Informatics, pp: 19-24.
Pourabdollah, A.; Morley, J.; Feldman, S.; Jackson, M. (2013). “Towards an Authoritative OpenStreetMap: Conflating OSM and OS OpenData National Map's Road Network”. International Journal of Geo-Information 2, 704-728.
Pouryazdan, M., Kantarci, B, Soyata, T, Foschini, L, Song, H, (2017), “Quantifying User Reputation Scores, Data Trust worthiness, and User Incentives in Mobile Crowd-Sensing”. IEEE Access 5, pp:1382–1397.
Pouryazdan, M, Fiandrino, C. Kantarci, B., Kliazovich, D, Soyata, T., Bouvry, P. (2016), “Game-theoretic recruitment of sensing service providers for trustworthy cloud-centric internet-of-things applications”. IEEE GLOBECOM Workshops, pp. 1–6
Proshansky H. M. (1978). “The city and self-identity.” Environ Behav. 10: p: 147–169.
Relph E. (1976). “Place and placelessness.” London: Pion.
Simonite, T. (2013), The Decline of Wikipedia. [link]
Tapscott, D. and Williams, A.D. (2006). “Wikinomics: How Mass Collaboration Changes Everything”. Portfolio, New York.
Zhang, X. Zheng, Y, Sun, W, Liu, Y, Tang, S. Xing, K and Mao, X.: "Incentives for Mobile Crowd Sensing: A Survey," (2016). IEEE Communications Surveys & Tutorials, 18, (1), pp. 54-67.
Wanli Ye, Wei Jiang, Zheng Tong, Dongdong Yuan & Jingjing Xiao (2021) Convolutional neural network for pothole detection in asphalt pavement, Road Materials and Pavement Design, 22:1, 42-58, DOI: 10.1080/14680629.2019.1615533.
Zimmerman, M.I., Porter, J.R., Ward, M.D. et al. (2021). SARS-CoV-2 simulations go exascale to predict dramatic spike opening and cryptic pockets across the proteome. Nature Chemistry, 13, 651–659, https://doi.org/10.1038/s41557-021-00707-0