ConCReCT: Um Mecanismo para Mitigação dos Efeitos de Ataques de Negação de Serviço em Internet das Coisas Industriais

  • Vladimir Borgiani UFF
  • Patrick Moratori UFF
  • Juliano Kazienko UFSM
  • Emilio Tubino UNIPAMPA

Resumo


Ataques de Negação de Serviço Volumétrico são caracterizados por um alto volume de tráfego direcionado a um, ou mais, dispositivos conectados à Internet. Estratégias existentes, baseadas em controle de admissão e reputação, são eficazes na detecção. Porém, a minimização, ou eliminação, de seus efeitos carecem de esforços mitigatórios. Este artigo propõe um mecanismo denominado ConCReCT (Controle de Congestionamento com Restrição do Ciclo de Trabalho) cujo objetivo é permitir que cada nó de uma rede possa gerenciar o seu tráfego e controlar parâmetros do Ciclo de Trabalho (Duty-cycle) a fim de detectar e, principalmente, mitigar ataques de negação de serviço. Resultados de simulação indicam uma eficácia de 100% em redes com até 20 nós.

Referências

Alam, K. M., Kamruzzaman, J., Karmakar, G., Murshed, M., and Azad, A. K. M. (2011). QoS support in event detection in WSN through optimal k-coverage. Procedia Computer Science, 4:499–507.

Alcaraz, C. and Lopez, J. (2010). A Security Analysis for Wireless Sensor Mesh Networks in Highly Critical Systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(4):419–428.

Czyz, J., Kallitsis, M., Gharaibeh, M., Papadopoulos, C., Bailey, M., and Karir, M. (2014). Taming the 800 Pound Gorilla: The Rise and Decline of NTP DDoS Attacks. In Conference on Internet Measurement Conference - IMC 2014, pages 435–448, New York, USA. ACM Press.

Dharini, N., Balakrishnan, R., and Renold, A. P. (2015). Distributed detection of flooding and gray hole attacks in Wireless Sensor Network. International Conference on Smart Technologies and Management for Computing, Communication, Controls, Energy and Materials (ICSTM), (May):178–184.

Dunkels, A. (2011). The ContikiMAC Radio Duty Cycling Protocol. SICS Technical Report T2011:13, ISSN 1100-3154, pages 1–11.

Evans, P. C. and Annunziata, M. (2012). Industrial Internet: Pushing the Boundaries of Minds and Machines. General Electric, page 37.

Ghazali, K. W. M. and Hassan, R. (2011). Flooding distributed denial of service attacks-A review. Journal of Computer Science, 7(8):1218–1223.

Gubbi, J., Buyya, R., Marusic, S., and Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7):1645–1660.

Karlof, C. (2003). Secure routing in wireless sensor networks: attacks and countermeasures. Ad Hoc Networks, 1(2-3):293–315.

Kasinathan, P., Pastrone, C., Spirito, M. A., and Vinkovits, M. (2013). Denial-of-Service detection in 6LoWPAN based Internet of Things. International Conference on Wireless and Mobile Computing, Networking and Communications, pages 600–607.

Kwon, K., Ha, M., Kim, S. H., and Kim, D. (2013). TAMR: Traffic-aware multipath routing for fault tolerance in 6LoWPAN. IEEE Global Telecommunications Conference - GLOBECOM, pages 109–114.

Miorandi, D., Sicari, S., De Pellegrini, F., and Chlamtac, I. (2012). Internet of things: Vision, applications and research challenges. Ad Hoc Networks, 10(7):1497–1516.

Moteiv Corporation (2006). Tmote Sky Datasheet. Disponivel em [link]. Acessado em 17 de Junho de 2017.

Nigam, V., Jain, S., and Burse, K. (2014). Profile based scheme against DDoS attack in WSN. 2014 4th International Conference on Communication Systems and Network Technologies, CSNT 2014, pages 112–116.

Osterlind, F., Dunkels, A., Eriksson, J., Finne, N., and Voigt, T. (2006). Cross-Level Sensor Network Simulation with COOJA. In Proceedings. 2006 31st IEEE Conference on Local Computer Networks, pages 641–648. IEEE.

Ploumis, S. E., Sgora, A., Kandris, D., and Vergados, D. D. (2012). Congestion Avoidance in Wireless Sensor Networks: A Survey. 2012 16th Panhellenic Conference on Informatics, pages 234–239.

Raza, S., Wallgren, L., and Voigt, T. (2013). SVELTE: Real-time intrusion detection in the Internet of Things. Ad Hoc Networks, 11(8):2661–2674.

Rughinis, R. and Gheorghe, L. (2010). Storm Control Mechanism in Wireless Sensor Networks. 9th Roedunet Ieee International Conference, pages 430–435.

Sachan, R. S., Wazid, M., Singh, D. P., and Goudar, R. H. (2013). A cluster based intrusion detection and prevention technique for misdirection attack inside WSN. International Conference on Communication and Signal Processing, ICCSP 2013, pages 795–801.

Sassani, B. A., Abarro, C., Pitton, I., Young, C., and Mehdipour, F. (2016). Analysis of NTP DRDoS attacks’ performance effects and mitigation techniques. pages 421–427.

Stavrou, E. and Pitsillides, A. (2014). Recovering from the selective forwarding attack in WSNs - Enhancing the recovery benefits of blacklisting and rerouting using directional antennas. IWCMC 2014 - 10th International Wireless Communications and Mobile Computing Conference, pages 299–303.

The MathWorks Inc. (2015). MATLAB Version R2015b. Disponivel em https://www.mathworks.com/. Acessado em 10 de Junho de 2017.

Wallgren, L., Raza, S., and Voigt, T. (2013). Routing Attacks and Countermeasures in the RPL-Based Internet of Things. International Journal of Distributed Sensor Networks, 9(8):794326.

Zargar, S. T., Joshi, J., Tipper, D., and Member, S. (2013). A Survey of Defense Mechanisms Against Distributed Denial of Service (DDoS) Flooding Attacks. IEEE Communications Surveys & Tutorials, 15(4):2046–2069.
Publicado
06/11/2017
Como Citar

Selecione um Formato
BORGIANI, Vladimir; MORATORI, Patrick; KAZIENKO, Juliano; TUBINO, Emilio. ConCReCT: Um Mecanismo para Mitigação dos Efeitos de Ataques de Negação de Serviço em Internet das Coisas Industriais. In: SIMPÓSIO BRASILEIRO DE SEGURANÇA DA INFORMAÇÃO E DE SISTEMAS COMPUTACIONAIS (SBSEG), 17. , 2017, Brasília. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2017 . p. 84-97. DOI: https://doi.org/10.5753/sbseg.2017.19492.