Optimizing IoT Threat Detection with Kolmogorov-Arnold Networks (KANs)
Abstract
The exponential growth of the Internet of Things (IoT) has led to the emergence of substantial security concerns, with IoT networks becoming the primary target for cyberattacks. This study examines the potential of Kolmogorov-Arnold Networks (KANs) as an alternative to conventional machine learning models for intrusion detection in IoT networks. The study demonstrates that KANs, which employ learnable activation functions, outperform traditional MLPs and achieve competitive accuracy compared to state-of-the-art models such as Random Forest and XGBoost, while offering superior interpretability for intrusion detection in IoT networks.
Keywords:
Internet of Things (IoT), Intrusion Detection System (IDS), Kolmogorov-Arnold Networks (KANs), Machine Learning, Feature Selection, IoT Security, Network Traffic Classification
References
Abd Elaziz, M., Ahmed Fares, I., and Aseeri, A. O. (2024). Ckan: Convolutional kolmogorov–arnold networks model for intrusion detection in iot environment. IEEE Access, 12:134837–134851.
ANOH, N. G., KONE, T., ADEPO, J. C., M’MOH, J. F., and BABRI, M. (2024). Iot intrusion detection system based on machine learning algorithms usingthe unsw-nb15 dataset. International Journal of Advances in Scientific Research and Engineering, 10(01):16–28.
Arifin, M. M., Ahmed, M. S., Ghosh, T. K., Udoy, I. A., Zhuang, J., and haw Yeh, J. (2024). A survey on the application of generative adversarial networks in cybersecurity: Prospective, direction and open research scopes.
Arnau Muñoz, L., Berná Martínez, J. V., Maciá Pérez, F., and Lorenzo Fonseca, I. (2024). Anomaly detection system for data quality assurance in iot infrastructures based on machine learning. Internet of Things, 25:101095.
Arnold, V. (1957). On functions of three variable. Doklady Akademii Nauk SSSR, 114:679–681.
Atzori, L., Iera, A., and Morabito, G. (2017). Understanding the internet of things: definition, potentials, and societal role of a fast evolving paradigm. Ad Hoc Networks, 56:122–140.
Cvitic, I., Perakovic, D., Gupta, B. B., and Choo, K.-K. R. (2022). Boosting-based ddos detection in internet of things systems. IEEE Internet of Things Journal, 9(3):2109–2123.
Elsaid, S. A., Shehab, E., Mattar, A. M., Azar, A. T., and Hameed, I. A. (2024). Hybrid intrusion detection models based on gwo optimized deep learning. Discover Applied Sciences, 6(10):531.
Kalutharage, C. S., Liu, X., Chrysoulas, C., and Bamgboye, O. (2024). Neurosymbolic Learning in the XAI Framework for Enhanced Cyberattack Detection with Expert Knowledge Integration, page 236–249. Springer Nature Switzerland.
Kaur, B., Dadkhah, S., Shoeleh, F., Neto, E. C. P., Xiong, P., Iqbal, S., Lamontagne, P., Ray, S., and Ghorbani, A. A. (2023). Internet of things (iot) security dataset evolution: Challenges and future directions. Internet of Things, 22:100780.
Kilani, B. h. (2025). Convolutional kolmogorov–arnold networks: a survey. preprint.
Kolmogorov, A. (1957). On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition. Doklady Akademii Nauk SSSR, 114:953–956.
Lazzarini, R., Tianfield, H., and Charissis, V. (2023). A stacking ensemble of deep learning models for iot intrusion detection. Knowledge-Based Systems, 279:110941.
Lim, W., Yong, K. S. C., Lau, B. T., and Tan, C. C. L. (2024). Future of generative adversarial networks (gan) for anomaly detection in network security: A review. Computers and Security, 139:103733.
Liu, C., Chen, B., Shao, W., Zhang, C., Wong, K. K. L., and Zhang, Y. (2024a). Unraveling attacks to machine-learning-based iot systems: A survey and the open libraries behind them. IEEE Internet of Things Journal, 11(11):19232–19255.
Liu, Z., Wang, Y., Vaidya, S., Ruehle, F., Halverson, J., Soljačić, M., Hou, T., and Tegmark, M. (2024b). Kan: Kolmogorov-arnold networks.
Mahdavifar, S. and Ghorbani, A. A. (2024). Capsrule: Explainable deep learning for classifying network attacks. IEEE Transactions on Neural Networks and Learning Systems, 35(9):12434–12448.
Mohy-Eddine, M., Guezzaz, A., Benkirane, S., Azrour, M., and Farhaoui, Y. (2023). An ensemble learning based intrusion detection model for industrial iot security. Big Data Mining and Analytics, 6(3):273–287.
Neto, E. C. P., Dadkhah, S., Ferreira, R., Zohourian, A., Lu, R., and Ghorbani, A. A. (2023). Ciciot2023: A real-time dataset and benchmark for large-scale attacks in iot environment. Sensors, 23(13):5941.
Neto, E. C. P., Dadkhah, S., Sadeghi, S., Molyneaux, H., and Ghorbani, A. A. (2024). A review of machine learning (ml)-based iot security in healthcare: A dataset perspective. Computer Communications, 213:61–77.
Qaddos, A., Yaseen, M. U., Al-Shamayleh, A. S., Imran, M., Akhunzada, A., and Alharthi, S. Z. (2024). A novel intrusion detection framework for optimizing iot security. Scientific Reports, 14(1):21789.
Rane, N., Choudhary, S., and Rane, J. (2024). Ensemble deep learning and machine learning: Applications, opportunities, challenges, and future directions. SSRN Electronic Journal.
Sarker, I. H., Khan, A. I., Abushark, Y. B., and Alsolami, F. (2022). Internet of things (iot) security intelligence: A comprehensive overview, machine learning solutions and research directions. Mobile Networks and Applications, 28(1):296–312.
Sasi, T., Lashkari, A. H., Lu, R., Xiong, P., and Iqbal, S. (2024). A comprehensive survey on iot attacks: Taxonomy, detection mechanisms and challenges. Journal of Information and Intelligence, 2(6):455–513.
Simmons, A. (2022). Internet of things (IoT) architecture: Layers explained.
The pandas development team (2020). pandas-dev/pandas: Pandas.
Tsimenidis, S., Lagkas, T., and Rantos, K. (2021). Deep learning in iot intrusion detection. Journal of Network and Systems Management, 30(1):8.
Wang, L., Han, M., Li, X., Zhang, N., and Cheng, H. (2021). Review of classification methods on unbalanced data sets. IEEE Access, 9:64606–64628.
Wang, X., Dai, L., and Yang, G. (2024). A network intrusion detection system based on deep learning in the iot. The Journal of Supercomputing, 80(16):24520–24558.
Waqas Khan, Q., Nawaz Khan, A., Ahmad, R., Rizwan, A., Ibrahim, M., and Kim, D. H. (2024). Enhanced abnormality detection via pso-driven adaptive ensemble weighting for energy aiot device security. IEEE Access, 12:138483–138500.
Wes McKinney (2010). Data Structures for Statistical Computing in Python. In Stéfan van der Walt and Jarrod Millman, editors, Proceedings of the 9th Python in Science Conference, pages 56 – 61.
ANOH, N. G., KONE, T., ADEPO, J. C., M’MOH, J. F., and BABRI, M. (2024). Iot intrusion detection system based on machine learning algorithms usingthe unsw-nb15 dataset. International Journal of Advances in Scientific Research and Engineering, 10(01):16–28.
Arifin, M. M., Ahmed, M. S., Ghosh, T. K., Udoy, I. A., Zhuang, J., and haw Yeh, J. (2024). A survey on the application of generative adversarial networks in cybersecurity: Prospective, direction and open research scopes.
Arnau Muñoz, L., Berná Martínez, J. V., Maciá Pérez, F., and Lorenzo Fonseca, I. (2024). Anomaly detection system for data quality assurance in iot infrastructures based on machine learning. Internet of Things, 25:101095.
Arnold, V. (1957). On functions of three variable. Doklady Akademii Nauk SSSR, 114:679–681.
Atzori, L., Iera, A., and Morabito, G. (2017). Understanding the internet of things: definition, potentials, and societal role of a fast evolving paradigm. Ad Hoc Networks, 56:122–140.
Cvitic, I., Perakovic, D., Gupta, B. B., and Choo, K.-K. R. (2022). Boosting-based ddos detection in internet of things systems. IEEE Internet of Things Journal, 9(3):2109–2123.
Elsaid, S. A., Shehab, E., Mattar, A. M., Azar, A. T., and Hameed, I. A. (2024). Hybrid intrusion detection models based on gwo optimized deep learning. Discover Applied Sciences, 6(10):531.
Kalutharage, C. S., Liu, X., Chrysoulas, C., and Bamgboye, O. (2024). Neurosymbolic Learning in the XAI Framework for Enhanced Cyberattack Detection with Expert Knowledge Integration, page 236–249. Springer Nature Switzerland.
Kaur, B., Dadkhah, S., Shoeleh, F., Neto, E. C. P., Xiong, P., Iqbal, S., Lamontagne, P., Ray, S., and Ghorbani, A. A. (2023). Internet of things (iot) security dataset evolution: Challenges and future directions. Internet of Things, 22:100780.
Kilani, B. h. (2025). Convolutional kolmogorov–arnold networks: a survey. preprint.
Kolmogorov, A. (1957). On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition. Doklady Akademii Nauk SSSR, 114:953–956.
Lazzarini, R., Tianfield, H., and Charissis, V. (2023). A stacking ensemble of deep learning models for iot intrusion detection. Knowledge-Based Systems, 279:110941.
Lim, W., Yong, K. S. C., Lau, B. T., and Tan, C. C. L. (2024). Future of generative adversarial networks (gan) for anomaly detection in network security: A review. Computers and Security, 139:103733.
Liu, C., Chen, B., Shao, W., Zhang, C., Wong, K. K. L., and Zhang, Y. (2024a). Unraveling attacks to machine-learning-based iot systems: A survey and the open libraries behind them. IEEE Internet of Things Journal, 11(11):19232–19255.
Liu, Z., Wang, Y., Vaidya, S., Ruehle, F., Halverson, J., Soljačić, M., Hou, T., and Tegmark, M. (2024b). Kan: Kolmogorov-arnold networks.
Mahdavifar, S. and Ghorbani, A. A. (2024). Capsrule: Explainable deep learning for classifying network attacks. IEEE Transactions on Neural Networks and Learning Systems, 35(9):12434–12448.
Mohy-Eddine, M., Guezzaz, A., Benkirane, S., Azrour, M., and Farhaoui, Y. (2023). An ensemble learning based intrusion detection model for industrial iot security. Big Data Mining and Analytics, 6(3):273–287.
Neto, E. C. P., Dadkhah, S., Ferreira, R., Zohourian, A., Lu, R., and Ghorbani, A. A. (2023). Ciciot2023: A real-time dataset and benchmark for large-scale attacks in iot environment. Sensors, 23(13):5941.
Neto, E. C. P., Dadkhah, S., Sadeghi, S., Molyneaux, H., and Ghorbani, A. A. (2024). A review of machine learning (ml)-based iot security in healthcare: A dataset perspective. Computer Communications, 213:61–77.
Qaddos, A., Yaseen, M. U., Al-Shamayleh, A. S., Imran, M., Akhunzada, A., and Alharthi, S. Z. (2024). A novel intrusion detection framework for optimizing iot security. Scientific Reports, 14(1):21789.
Rane, N., Choudhary, S., and Rane, J. (2024). Ensemble deep learning and machine learning: Applications, opportunities, challenges, and future directions. SSRN Electronic Journal.
Sarker, I. H., Khan, A. I., Abushark, Y. B., and Alsolami, F. (2022). Internet of things (iot) security intelligence: A comprehensive overview, machine learning solutions and research directions. Mobile Networks and Applications, 28(1):296–312.
Sasi, T., Lashkari, A. H., Lu, R., Xiong, P., and Iqbal, S. (2024). A comprehensive survey on iot attacks: Taxonomy, detection mechanisms and challenges. Journal of Information and Intelligence, 2(6):455–513.
Simmons, A. (2022). Internet of things (IoT) architecture: Layers explained.
The pandas development team (2020). pandas-dev/pandas: Pandas.
Tsimenidis, S., Lagkas, T., and Rantos, K. (2021). Deep learning in iot intrusion detection. Journal of Network and Systems Management, 30(1):8.
Wang, L., Han, M., Li, X., Zhang, N., and Cheng, H. (2021). Review of classification methods on unbalanced data sets. IEEE Access, 9:64606–64628.
Wang, X., Dai, L., and Yang, G. (2024). A network intrusion detection system based on deep learning in the iot. The Journal of Supercomputing, 80(16):24520–24558.
Waqas Khan, Q., Nawaz Khan, A., Ahmad, R., Rizwan, A., Ibrahim, M., and Kim, D. H. (2024). Enhanced abnormality detection via pso-driven adaptive ensemble weighting for energy aiot device security. IEEE Access, 12:138483–138500.
Wes McKinney (2010). Data Structures for Statistical Computing in Python. In Stéfan van der Walt and Jarrod Millman, editors, Proceedings of the 9th Python in Science Conference, pages 56 – 61.
Published
2025-09-01
How to Cite
EMELIANOVA, Natalia; KAMIENSKI, Carlos; PRATI, Ronaldo C..
Optimizing IoT Threat Detection with Kolmogorov-Arnold Networks (KANs). In: BRAZILIAN SYMPOSIUM ON CYBERSECURITY (SBSEG), 25. , 2025, Foz do Iguaçu/PR.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2025
.
p. 676-692.
DOI: https://doi.org/10.5753/sbseg.2025.9767.
