Uma Proposta de Algoritmo para a Detecção de Mixers na Ethereum
Resumo
Este trabalho apresenta uma metodologia de detecção de contratos inteligentes do tipo mixers na rede Ethereum. Utilizou-se um modelo de aprendizado de máquina baseado em Random Forest, treinado com transações do Tornado Cash e balanceado com amostras de 100 endereços aleatórios não relacionados a mixers. O modelo foi treinado com dados de março de 2025 e validado em 29/10/2020, dia de alto volume de transações, identificando corretamente 3 endereços do Tornado Cash.Referências
(2019). Tornado cash: Privacy solution for ethereum. [link].
(2023). Blockchair: Universal blockchain explorer and api. Accessado: 2 de Maio, 2025.
(2024). Tornado.cash: 10 eth mixer contract. [link]. Acesso em: 15-Mar-2025.
Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.
Brownworth, A., Durfee, J., Lee, M. J., and Martin, A. (2024). Regulating decentralized systems: Evidence from sanctions on tornado cash. Technical report, Federal Reserve Bank of New York.
Béres, F., Seres, I. A., Benczúr, A. A., and Quintyne-Collins, M. (2020). Blockchain is watching you: Profiling and deanonymizing ethereum users.
Du, H., Che, Z., Shen, M., Zhu, L., and Hu, J. (2024). Breaking the anonymity of ethereum mixing services using graph feature learning. IEEE Transactions on Information Forensics and Security, 19:616–631.
Ermilov, D., Panov, M., and Yanovich, Y. (2017). Automatic bitcoin address clustering. In 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), pages 461–466.
Etherscan Blockchain Explorer. Etherscan blockchain explorer. Acesso em: maio de 2025.
Gomez, G., Moreno-Sanchez, P., and Caballero, J. (2022). Detecting cybercriminal bitcoin relationships through backwards exploration.
Kappos, G. and Piotrowska, A. M. (2019). Extending the anonymity of zcash. pages 5–6.
Mariani, J. and Homoliak, I. (2025). Sok: A survey of mixing techniques and mixers for cryptocurrencies.
Meiklejohn, S. and Mercer, R. (2018). Möbius: Trustless tumbling for transaction privacy. Proceedings on Privacy Enhancing Technologies, 2018(2):105–121.
Nadler, M. and Schär, F. (2023). Tornado cash and blockchain privacy: A primer for economists and policymakers. Federal Reserve Bank of St. Louis Review, 105:122–136.
Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system.
Patsakis, C., Politou, E., Alepis, E., and Hernandez-Castro, J. (2024). Cashing out crypto: state of practice in ransom payments. International Journal of Information Security, 23:699–712.
Shojaeenasab, A., Motamed, A. P., and Bahrak, B. (2022). Mixing detection on bitcoin transactions using statistical patterns.
Tang, Y., Xu, C., Zhang, C., Wu, Y., and Zhu, L. (2022a). Analysis of Address Linkability in Tornado Cash on Ethereum, pages 39–50.
Tang, Y., Xu, C., Zhang, C., Wu, Y., and Zhu, L. (2022b). Analysis of address linkability in tornado cash on ethereum. In Communications in Computer and Information Science, volume 1506 CCIS, pages 39–50. Springer Science and Business Media Deutschland GmbH.
Team, C. (2023). 2023 crypto crime trends: Illicit cryptocurrency volumes reach all-time highs amid surge in sanctions designations and hacking-chainalysis. Chainalysis Crime Report, pages 1–8.
Team, T. (2021). Typhoon.network documentation. [link].
Tironsakkul, T., Maarek, M., Eross, A., and Just, M. (2020). Tracking mixed bitcoins.
Victor, F. and Weintraud, A. M. (2021). Detecting and quantifying wash trading on decentralized cryptocurrency exchanges. In The Web Conference 2021 - Proceedings of the World Wide Web Conference, WWW 2021, pages 23–32. Association for Computing Machinery, Inc.
Wang, Z., Chaliasos, S., Qin, K., Zhou, L., Gao, L., Berrang, P., Livshits, B., and Gervais, A. (2023a). On how zero-knowledge proof blockchain mixers improve, and worsen user privacy. In Proceedings of the ACM Web Conference 2023, WWW ’23, page 2022–2032, New York, NY, USA. Association for Computing Machinery.
Wang, Z., Chaliasos, S., Qin, K., Zhou, L., Gao, L., Berrang, P., Livshits, B., and Gervais, A. (2023b). On how zero-knowledge proof blockchain mixers improve, and worsen user privacy. In ACM Web Conference 2023 - Proceedings of the World Wide Web Conference, WWW 2023, pages 2022–2032. Association for Computing Machinery, Inc.
Wood, G. et al. (2014). Ethereum: A secure decentralised generalised transaction ledger. Ethereum project yellow paper, 151(2014):1–32.
Xu, C., Xiong, R., Shen, X., Zhu, L., and Zhang, X. (2023). How to find a bitcoin mixer: A dual ensemble model for bitcoin mixing service detection. IEEE Internet of Things Journal, 10:17220–17230.
Youn, M., Chin, K., and Omote, K. (2023a). Empirical analysis of cryptocurrency mixer: Tornado cash. In 2023 Congress in Computer Science, Computer Engineering, Applied Computing (CSCE), pages 2324–2331.
Youn, M., Chin, K., and Omote, K. (2023b). Empirical analysis of cryptocurrency mixer: Tornado cash. In Proceedings - 2023 Congress in Computer Science, Computer Engineering, and Applied Computing, CSCE 2023, pages 2324–2331. Institute of Electrical and Electronics Engineers Inc.
Ziegeldorf, J. H., Grossmann, F., Henze, M., Inden, N., and Wehrle, K. (2015). Coinparty: Secure multi-party mixing of bitcoins. In Proceedings of the 5th ACM Conference on Data and Application Security and Privacy, CODASPY ’15, page 75–86, New York, NY, USA. Association for Computing Machinery.
Zola, F., Medina, J. A., Venturi, A., and Orduna, R. (2025). Topological analysis of mixer activities in the bitcoin network.
(2023). Blockchair: Universal blockchain explorer and api. Accessado: 2 de Maio, 2025.
(2024). Tornado.cash: 10 eth mixer contract. [link]. Acesso em: 15-Mar-2025.
Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.
Brownworth, A., Durfee, J., Lee, M. J., and Martin, A. (2024). Regulating decentralized systems: Evidence from sanctions on tornado cash. Technical report, Federal Reserve Bank of New York.
Béres, F., Seres, I. A., Benczúr, A. A., and Quintyne-Collins, M. (2020). Blockchain is watching you: Profiling and deanonymizing ethereum users.
Du, H., Che, Z., Shen, M., Zhu, L., and Hu, J. (2024). Breaking the anonymity of ethereum mixing services using graph feature learning. IEEE Transactions on Information Forensics and Security, 19:616–631.
Ermilov, D., Panov, M., and Yanovich, Y. (2017). Automatic bitcoin address clustering. In 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), pages 461–466.
Etherscan Blockchain Explorer. Etherscan blockchain explorer. Acesso em: maio de 2025.
Gomez, G., Moreno-Sanchez, P., and Caballero, J. (2022). Detecting cybercriminal bitcoin relationships through backwards exploration.
Kappos, G. and Piotrowska, A. M. (2019). Extending the anonymity of zcash. pages 5–6.
Mariani, J. and Homoliak, I. (2025). Sok: A survey of mixing techniques and mixers for cryptocurrencies.
Meiklejohn, S. and Mercer, R. (2018). Möbius: Trustless tumbling for transaction privacy. Proceedings on Privacy Enhancing Technologies, 2018(2):105–121.
Nadler, M. and Schär, F. (2023). Tornado cash and blockchain privacy: A primer for economists and policymakers. Federal Reserve Bank of St. Louis Review, 105:122–136.
Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system.
Patsakis, C., Politou, E., Alepis, E., and Hernandez-Castro, J. (2024). Cashing out crypto: state of practice in ransom payments. International Journal of Information Security, 23:699–712.
Shojaeenasab, A., Motamed, A. P., and Bahrak, B. (2022). Mixing detection on bitcoin transactions using statistical patterns.
Tang, Y., Xu, C., Zhang, C., Wu, Y., and Zhu, L. (2022a). Analysis of Address Linkability in Tornado Cash on Ethereum, pages 39–50.
Tang, Y., Xu, C., Zhang, C., Wu, Y., and Zhu, L. (2022b). Analysis of address linkability in tornado cash on ethereum. In Communications in Computer and Information Science, volume 1506 CCIS, pages 39–50. Springer Science and Business Media Deutschland GmbH.
Team, C. (2023). 2023 crypto crime trends: Illicit cryptocurrency volumes reach all-time highs amid surge in sanctions designations and hacking-chainalysis. Chainalysis Crime Report, pages 1–8.
Team, T. (2021). Typhoon.network documentation. [link].
Tironsakkul, T., Maarek, M., Eross, A., and Just, M. (2020). Tracking mixed bitcoins.
Victor, F. and Weintraud, A. M. (2021). Detecting and quantifying wash trading on decentralized cryptocurrency exchanges. In The Web Conference 2021 - Proceedings of the World Wide Web Conference, WWW 2021, pages 23–32. Association for Computing Machinery, Inc.
Wang, Z., Chaliasos, S., Qin, K., Zhou, L., Gao, L., Berrang, P., Livshits, B., and Gervais, A. (2023a). On how zero-knowledge proof blockchain mixers improve, and worsen user privacy. In Proceedings of the ACM Web Conference 2023, WWW ’23, page 2022–2032, New York, NY, USA. Association for Computing Machinery.
Wang, Z., Chaliasos, S., Qin, K., Zhou, L., Gao, L., Berrang, P., Livshits, B., and Gervais, A. (2023b). On how zero-knowledge proof blockchain mixers improve, and worsen user privacy. In ACM Web Conference 2023 - Proceedings of the World Wide Web Conference, WWW 2023, pages 2022–2032. Association for Computing Machinery, Inc.
Wood, G. et al. (2014). Ethereum: A secure decentralised generalised transaction ledger. Ethereum project yellow paper, 151(2014):1–32.
Xu, C., Xiong, R., Shen, X., Zhu, L., and Zhang, X. (2023). How to find a bitcoin mixer: A dual ensemble model for bitcoin mixing service detection. IEEE Internet of Things Journal, 10:17220–17230.
Youn, M., Chin, K., and Omote, K. (2023a). Empirical analysis of cryptocurrency mixer: Tornado cash. In 2023 Congress in Computer Science, Computer Engineering, Applied Computing (CSCE), pages 2324–2331.
Youn, M., Chin, K., and Omote, K. (2023b). Empirical analysis of cryptocurrency mixer: Tornado cash. In Proceedings - 2023 Congress in Computer Science, Computer Engineering, and Applied Computing, CSCE 2023, pages 2324–2331. Institute of Electrical and Electronics Engineers Inc.
Ziegeldorf, J. H., Grossmann, F., Henze, M., Inden, N., and Wehrle, K. (2015). Coinparty: Secure multi-party mixing of bitcoins. In Proceedings of the 5th ACM Conference on Data and Application Security and Privacy, CODASPY ’15, page 75–86, New York, NY, USA. Association for Computing Machinery.
Zola, F., Medina, J. A., Venturi, A., and Orduna, R. (2025). Topological analysis of mixer activities in the bitcoin network.
Publicado
01/09/2025
Como Citar
LEALE, Pedro; SENDIN, Ivan da Silva.
Uma Proposta de Algoritmo para a Detecção de Mixers na Ethereum. In: WORKSHOP DE TRABALHOS DE INICIAÇÃO CIENTÍFICA E DE GRADUAÇÃO EM ANDAMENTO - SIMPÓSIO BRASILEIRO DE CIBERSEGURANÇA (SBSEG), 25. , 2025, Foz do Iguaçu/PR.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2025
.
p. 331-337.
DOI: https://doi.org/10.5753/sbseg_estendido.2025.10916.
