Construção de Conjunto de Classificadores Baseado na Diversidade do Espaço de Características e Algoritmos de Aprendizagem para Detecção de Spam

  • Gabriel P. Lutz UFSM
  • Lucas Ost UFSM
  • Márcia Henke UFSM

Abstract


Research in the class machines area focus their efforts on diversity for the construction ensemble classifiers. The concept of diversity is related to the resources used to develop ensemble classifiers. It is demonstrated that diversity over learning algorithms performs better than feature manipulation capabilities. Showing considerable reduction of false positives in problem spam classification, in addition to the other metrics addressed as precision, accuracy, measure-f1 and recall.

References

Bhat, S. Y., Abulaish, M., and Mirza, A. A. (2014). Spammer classification using ensemble methods over structural social network features. In Proceedings of the 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT)-Volume 02, pages 454–458. IEEE Computer Society.

Díez-Pastor, J. F., Rodríguez, J. J., García-Osorio, C. I., and Kuncheva, L. I. (2015). Diversity techniques improve the performance of the best imbalance learning ensembles. volume 325, pages 98–117. Elsevier.

Easwaramoorthy, S., Thamburasa, S., Aravind, K., Bhushan, S. B., and Rajadurai, H. (2016). Heterogeneous classifier model for e-mail spam classification using fso feature selection method. In Inventive Computation Technologies (ICICT), International Conference on, volume 1, pages 1–6. IEEE.

Ibrahim, A. J., Siraj, M. M., and Din, M. M. (2017). Ensemble classifiers for spam review detection. In Application, Information and Network Security (AINS), 2017 IEEE Conference on, pages 130–134. IEEE.

Symantec (2018). Monthly threat report, Acessado em 20 de Junho de 2018. [link].

Yin, X.-C., Huang, K., Hao, H.-W., Iqbal, K., and Wang, Z.-B. (2014). A novel classifier ensemble method with sparsity and diversity. In Neurocomputing, volume 134, pages 214–221. Elsevier.
Published
2018-10-25
LUTZ, Gabriel P.; OST, Lucas; HENKE, Márcia. Construção de Conjunto de Classificadores Baseado na Diversidade do Espaço de Características e Algoritmos de Aprendizagem para Detecção de Spam. In: WORKSHOP ON SCIENTIFIC INITIATION AND UNDERGRADUATE WORKS - BRAZILIAN SYMPOSIUM ON CYBERSECURITY (SBSEG), 18. , 2018, Natal. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2018 . p. 185-188. DOI: https://doi.org/10.5753/sbseg_estendido.2018.4156.