Classificador de alinhamento de ontologias utilizando técnicas de aprendizado de máquina
Resumo
O processo de alinhamento de ontologias é uma das etapas necessárias para que se possa reduzir a heterogeneidade semântica entre ontologias existentes. Este trabalho apresenta uma abordagem baseada em técnicas de aprendizado de máquina para gerar modelos classificadores de alinhamento de ontologias, tendo como base de dados os alinhamentos encontrados através de diferentes funções de similaridade.
Referências
Alex Alves, Natalia Padilha, Sean Siqueira, Fernanda Baião and Kate Revoredo. (2012), "Using Concept Maps and Ontology Alignment for Learning Assessment", IEEE Technology and Engineering Education (ITEE), 1558-7908 © 2012 IEEE Education Society Students Activities Committee (EdSocSAC).
Berners-Lee, T., Hendler, J. E Lassila, O. (2001) The semantic web, Scientific American, p. 28-37
C. Thornton, F. Hutter, H.H. Hoos, and K. Leyton-Brown, (2012) Auto-WEKA: Automated Selection and Hyper-Parameter Optimization of Classification Algorithms. ;In Proceedings of CoRR.
Doan A., Madhavan J., Domingos P., Halevy A., (2003) Ontology matching: a machine learning approach. In: Handbook on ontologies in information systems. New York: Information Science Reference, pp 397–416.
Duyhoa N., Zohra B., E Remi C. (2011) “A Flexible system for ontology matching”. Proceedings In Caise 2011 Forum.
Ehrig, M. (2007) Ontology Alignment: Bridging the Semantic Gap, Springer.
Euzenat, J., Meilicke, C., Stuckenschmidt, H., Shvaiko, P., Trojahn, C., (2011) Ontology Alignment Evaluation Initiative: six years of experience, Journal on data semantics XV.
Euzenat, J., Shvaiko, P. (2007) Ontology Matching, Springer-Verlag Berlin Heidelberg.
Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., (1996) “From Data Mining to Knowledge Discovery in Databases”, AI Magazine, American Association for Artificial Intelligence, pp. 37-54.
G. Kondrak. (2005) “N-gram similarity and distance”. Proceedings of the Twelfth International Conference on String Processing and Information Retrieval (SPIRE 2005), pp. 115-126, Buenos Aires, Argentina.
Gruber, T., R. (1993) “A translation approach to portable ontologies. Knowledge
Acquisition”, pp. 199-220. Disponível em http://kslweb.stanford.edu/KSL_Abstracts/KSL-92-71.html.
Ian H. W., Eibe F., Mark A. H., Geoffrey H. (2011) “Data Mining: Practical Machine Learning Tools and Techniques” (The Morgan Kaufmann Series in Data Management Systems) (3rd Edition)
Jaro, M. A. (1989). “Advances in record-linkage methodology as applied to matching the 1985 census of Tampa”, Florida. Journal of the American Statistical Association 84:414–420.
Levenstein, I. (1966) “Binary codes capable of correcting deletions, insertions and reversals”. Cybernetics and Control Theory.
Lima, E.S., Pozzer, C.T., D'ornellas, M., Ciarlini, A.E.M., Feijo, B., Furtado, A.L., 2009. Support Vector Machines for Cinematography Real-Time Camera Control in Storytelling Environments. In: VIII Brazilian Symposium on Games and Digital Entertainment, Rio de Janeiro, Brazil, pp. 44-51. [DOI: http://doi.ieeecomputersociety.org/10.1109/SBGAMES.2009.14].
Mitchell, T. M. (1997) Machine Learning. McGraw-Hill.
Monge, A., Elkan, C. (1996) “The field-matching problem: algorithm and applications”. In: Proceedings of the second international Conference on Knowledge Discovery and Data Mining.
Pang-Ning T., M. Steinbach, V. Kumar: (2009) Introdução ao “Data Mining” Mineração de Dados. Rio de Janeiro: Editora Ciência Moderna Ltda.
Smith, T. F.; Waterman, Michael S. (1981). "Identification of Common Molecular Subsequences". Journal of Molecular Biology 147 pp. 195–197. DOI:10.1016/0022-2836(81)90087-5.
Marcos A., Kate R., Leila A., (2012) Avaliando uma Oportunidade Exploratória de Petróleo através de Mineração de Dados: VIII Simpósio Brasileiro de Sistemas de Informação, SP. São Paulo, 2012. v. 3. p. 666-671.