SIMIRSOL: Solar Irradiance Simulation System

  • Felipe Hiroshi Baron UFMS
  • Fábio Iaione UFMS

Abstract


The use of photovoltaic cells as an energy source is increasingly present in embedded systems, so the analysis of the functioning of these cells is very relevant for verifying the autonomy of these systems. In this context, the exposure of photovoltaic cells to a known and controlled irradiance is essential to test them. Thus, we developed a low-cost irradiance simulator using a solar radiation sensor and LEDs with closed-loop control. We used a PI controller and performed tests with actual irradiance data. The proposed system, called SIMIRSOL, enables the assessment of the functioning of photovoltaic cells, facilitating their use as an energy source in embedded systems.

Keywords: simulator, solar irradiance, LEDs, closed-loop control

References

Adaramola, M. (2012). Estimating global solar radiation using common meteorological data in akure, nigeria. Renewable Energy, 47:38–44.

Al-Ahmad, A., Clark, D., Holdsworth, J., Vaughan, B., Belcher, W., and Dastoor, P. (2022). An economic led solar simulator design. IEEE journal of photovoltaics, 12(2):521–525.

Aldoshina, O., Yugay, V., Kaliaskarov, N., Esenjolov, U., and Nesipova, S. (2018). Solar simulator on the basis of powerful light-emitting diodes. MATEC web of conferences, 155:1035.

ANALOG DEVICES (2013). Micropower, single-and dual-supply, rail-to-rai instrumentation amplifier ad627. [link].

ANYSOLAR (2020). Ixolartm high efficiency solarmd. [link], urldate = 2019-11-08.

Bazzi, A. M., Klein, Z., Sweeney, M., Kroeger, K. P., Shenoy, P. S., and Krein, P. T. (2012). Solid-state solar simulator. IEEE transactions on industry applications, 48(4):1195–1202.

Chase, O., Teles, M., Rodrigues, M., De Almeida, F., Macêdo, W., and Junior, C. (2018). A low-cost, stand-alone sensory platform for monitoring extreme solar overirradiance events. Sensors, 18:2685.

Deng, D. (2015). Li-ion batteries: basics, progress, and challenges. Energy Science & Engineering, 3(5):385–418.

Emery, K., Meydbray, J., and Kurtz, S. (2012). Pyranometers and reference cells, the difference. PV Magazine, 4:108–110.

Erraissi, N., Aarich, N., Akhsassi, M., Mustapha, R., and Bennouna, A. (2017). An inexpensive and accurate solar irradiance sensor based in a small calibrated pv module.

Fuentes, M., Vivar, M., Burgos, J., Aguilera, J., and J.A.Vacas (2014). Design of an accurate, low-cost autonomous data logger for pv system monitoring using arduino (tm) that complies with iec standards. Solar Energy Materials and Solar Cells, 130:529–543.

Ibrahim, H. and Anani, N. (2017). Variations of pv module parameters with irradiance and temperature. Energy Procedia, 134.

Lopez-Fraguas, E., Sanchez-Pena, J. M., and Vergaz, R. (2019). A low-cost led-based solar simulator. IEEE transactions on instrumentation and measurement, 68(12):4913–4923.

Meshram, N. D. and Yadav, P. J. (2021). Design of a low cost solar simulator by using light emitting diode (led). Journal of physics. Conference series, 1921(1):12103.

Morais, R., Matos, S. G., Fernandes, M. A., Valente, A. L., Soares, S. F., Ferreira, P., and Reis, M. (2008). Sun, wind and water flow as energy supply for small stationary data acquisition platforms. Computers and Electronics in Agriculture, 64(2):120–132.

Novickovas, A., Baguckis, A., Mekys, A., and Tamosiunas, V. (2015). Compact lightemitting diode-based aaa class solar simulator: Design and application peculiarities. IEEE journal of photovoltaics, 5(4):1137–1142.

Novickovas, A., Baguckis, A., Vaitkunas, A., Mekys, A., and Tamosiunas, V. (2014). Investigation of solar simulator based on high-power light-emitting diodes. Lithuanian journal of physics, 54(2):114–119.

Ogata, K. (2010). Modern control engineering. Pearson Education.

Oliveira, L., Messagie, M., Rangaraju, S., Sanfelix, J., Hernandez Rivas, M., and Van Mierlo, J. (2015). Key issues of lithium-ion batteries – from resource depletion to environmental performance indicators. Journal of Cleaner Production, 108:354–362.

Stuckelberger, M., Perruche, B., Bonnet-Eymard, M., Riesen, Y., Despeisse, M., Haug, F.-J., and Ballif, C. (2014). Class aaa led-based solar simulator for steady-state measurements and light soaking. IEEE journal of photovoltaics, 4(5):1282–1287.

Sun, C., Jin, Z., Song, Y., Chen, Y., Xiong, D., Lan, K., Huang, Y., and Zhang, M. (2022). Led-based solar simulator for terrestrial solar spectra and orientations. Solar energy, 233:96–110.

Tavakoli, M., Jahantigh, F., and Zarookian, H. (2021). Adjustable high-power-led solar simulator with extended spectrum in uv region. Solar energy, 220:1130–1136.

Villalva, M. G., Gazoli, J. R., and Filho, E. R. (2009). Comprehensive approach to modeling and simulation of photovoltaic arrays. IEEE Transactions on Power Electronics, 24(5):1198–1208.

Vosylius, Z., Novickovas, A., Laurinavicius, K., and Tamosiunas, V. (2022). Rational design of scalable solar simulators with arrays of light-emitting diodes and double reflectors. IEEE journal of photovoltaics, 12(2):512–520.
Published
2022-07-31
BARON, Felipe Hiroshi; IAIONE, Fábio. SIMIRSOL: Solar Irradiance Simulation System. In: INTEGRATED SOFTWARE AND HARDWARE SEMINAR (SEMISH), 49. , 2022, Niterói. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2022 . p. 92-103. ISSN 2595-6205. DOI: https://doi.org/10.5753/semish.2022.222926.