SIMIRSOL: Sistema para Simulação de Irradiância Solar

  • Felipe Hiroshi Baron UFMS
  • Fábio Iaione UFMS

Resumo


O uso de células fotovoltaicas como fonte de energia está cada vez mais presente nos sistemas embarcados, portanto a análise do funcionamento dessas células é de extrema importância para verificar a autonomia desses sistemas. Nesse âmbito, a exposição das células fotovoltaicas a uma irradiância conhecida e controlada é imprescindível para testá-las. Assim, utilizando-se um sensor de radiação solar e LEDs, em malha fechada, foi desenvolvido um simulador de irradiâncias de baixo custo. Utilizou-se um controlador PI e foram realizados testes com dados reais de irradiância. Com o sistema proposto, chamado de SIMIRSOL, pode-se analisar o funcionamento das células fotovoltaicas, facilitando o seu uso como fonte de energia em sistemas embarcados.

Palavras-chave: simulador, irradiância solar, LEDs, controle de malha fechada

Referências

Adaramola, M. (2012). Estimating global solar radiation using common meteorological data in akure, nigeria. Renewable Energy, 47:38–44.

Al-Ahmad, A., Clark, D., Holdsworth, J., Vaughan, B., Belcher, W., and Dastoor, P. (2022). An economic led solar simulator design. IEEE journal of photovoltaics, 12(2):521–525.

Aldoshina, O., Yugay, V., Kaliaskarov, N., Esenjolov, U., and Nesipova, S. (2018). Solar simulator on the basis of powerful light-emitting diodes. MATEC web of conferences, 155:1035.

ANALOG DEVICES (2013). Micropower, single-and dual-supply, rail-to-rai instrumentation amplifier ad627. [link].

ANYSOLAR (2020). Ixolartm high efficiency solarmd. [link], urldate = 2019-11-08.

Bazzi, A. M., Klein, Z., Sweeney, M., Kroeger, K. P., Shenoy, P. S., and Krein, P. T. (2012). Solid-state solar simulator. IEEE transactions on industry applications, 48(4):1195–1202.

Chase, O., Teles, M., Rodrigues, M., De Almeida, F., Macêdo, W., and Junior, C. (2018). A low-cost, stand-alone sensory platform for monitoring extreme solar overirradiance events. Sensors, 18:2685.

Deng, D. (2015). Li-ion batteries: basics, progress, and challenges. Energy Science & Engineering, 3(5):385–418.

Emery, K., Meydbray, J., and Kurtz, S. (2012). Pyranometers and reference cells, the difference. PV Magazine, 4:108–110.

Erraissi, N., Aarich, N., Akhsassi, M., Mustapha, R., and Bennouna, A. (2017). An inexpensive and accurate solar irradiance sensor based in a small calibrated pv module.

Fuentes, M., Vivar, M., Burgos, J., Aguilera, J., and J.A.Vacas (2014). Design of an accurate, low-cost autonomous data logger for pv system monitoring using arduino (tm) that complies with iec standards. Solar Energy Materials and Solar Cells, 130:529–543.

Ibrahim, H. and Anani, N. (2017). Variations of pv module parameters with irradiance and temperature. Energy Procedia, 134.

Lopez-Fraguas, E., Sanchez-Pena, J. M., and Vergaz, R. (2019). A low-cost led-based solar simulator. IEEE transactions on instrumentation and measurement, 68(12):4913–4923.

Meshram, N. D. and Yadav, P. J. (2021). Design of a low cost solar simulator by using light emitting diode (led). Journal of physics. Conference series, 1921(1):12103.

Morais, R., Matos, S. G., Fernandes, M. A., Valente, A. L., Soares, S. F., Ferreira, P., and Reis, M. (2008). Sun, wind and water flow as energy supply for small stationary data acquisition platforms. Computers and Electronics in Agriculture, 64(2):120–132.

Novickovas, A., Baguckis, A., Mekys, A., and Tamosiunas, V. (2015). Compact lightemitting diode-based aaa class solar simulator: Design and application peculiarities. IEEE journal of photovoltaics, 5(4):1137–1142.

Novickovas, A., Baguckis, A., Vaitkunas, A., Mekys, A., and Tamosiunas, V. (2014). Investigation of solar simulator based on high-power light-emitting diodes. Lithuanian journal of physics, 54(2):114–119.

Ogata, K. (2010). Modern control engineering. Pearson Education.

Oliveira, L., Messagie, M., Rangaraju, S., Sanfelix, J., Hernandez Rivas, M., and Van Mierlo, J. (2015). Key issues of lithium-ion batteries – from resource depletion to environmental performance indicators. Journal of Cleaner Production, 108:354–362.

Stuckelberger, M., Perruche, B., Bonnet-Eymard, M., Riesen, Y., Despeisse, M., Haug, F.-J., and Ballif, C. (2014). Class aaa led-based solar simulator for steady-state measurements and light soaking. IEEE journal of photovoltaics, 4(5):1282–1287.

Sun, C., Jin, Z., Song, Y., Chen, Y., Xiong, D., Lan, K., Huang, Y., and Zhang, M. (2022). Led-based solar simulator for terrestrial solar spectra and orientations. Solar energy, 233:96–110.

Tavakoli, M., Jahantigh, F., and Zarookian, H. (2021). Adjustable high-power-led solar simulator with extended spectrum in uv region. Solar energy, 220:1130–1136.

Villalva, M. G., Gazoli, J. R., and Filho, E. R. (2009). Comprehensive approach to modeling and simulation of photovoltaic arrays. IEEE Transactions on Power Electronics, 24(5):1198–1208.

Vosylius, Z., Novickovas, A., Laurinavicius, K., and Tamosiunas, V. (2022). Rational design of scalable solar simulators with arrays of light-emitting diodes and double reflectors. IEEE journal of photovoltaics, 12(2):512–520.
Publicado
31/07/2022
Como Citar

Selecione um Formato
BARON, Felipe Hiroshi; IAIONE, Fábio. SIMIRSOL: Sistema para Simulação de Irradiância Solar. In: SEMINÁRIO INTEGRADO DE SOFTWARE E HARDWARE (SEMISH), 49. , 2022, Niterói. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2022 . p. 92-103. ISSN 2595-6205. DOI: https://doi.org/10.5753/semish.2022.222926.