Compartilhamento de Dados de Tráfego de Rede Utilizando Privacidade Diferencial

  • Felipe C. Monteiro UFC
  • Felipe T. Brito UFC
  • Iago C. Chaves UFC
  • Javam C. Machado UFC

Abstract


Network traffic data is useful for a variety of applications. Entities that collect this type of data, such as Internet Service Providers (ISPs), generally share their network traffic information with external entities. However, this sharing can lead to privacy violations for the individuals contained in this data. This work proposes a new approach to sharing network traffic data using differential privacy, a method that aims to add noise to the original data. Experimental results show that the proposed approach introduces less noise into the data when compared to other techniques that also adopt differential privacy.

References

Brito, F. T. and Machado, J. C. (2017). Preservação de privacidade de dados: Fundamentos, técnicas e aplicações. Jornadas de atualização em informática, pages 91–130.

Bureau, U. C. (2021). Census bureau sets key parameters to protect privacy in 2020 census results. [link]. Acesso 03 de fevereiro de 2023.

Comissão Federal de Comunicação (2018). Privacidade do cliente. [link]. Acesso 17 de fevereiro de 2023.

de Castro Vidal, I., da Costa Mendonça, A. L., Rousseau, F., and Machado, J. C. (2020). Protecting: An application of local differential privacy for iot at the edge in smart home scenarios. In Anais do XXXVIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 547–560. SBC.

Dwork, C. (2006). Differential privacy. In International Colloquium on Automata, Languages, and Programming, pages 1–12. Springer.

GDPR (2018). General data protection regulation. https://gdpr-info.eu/. Acesso 17 de fevereiro de 2023.

Ghosh, A., Roughgarden, T., and Sundararajan, M. (2009). Universally utility-maximizing privacy mechanisms. In Proceedings of the forty-first annual ACM symposium on Theory of computing, pages 351–360.

IANA (2023). Internet Assigned Numbers Authority. https://www.iana.org/. Acesso em: 24 de março de 2023.

Joshi, M. and Hadi, T. H. (2015). A review of network traffic analysis and prediction techniques. arXiv preprint arXiv:1507.05722.

Koufogiannis, F. and Pappas, G. J. (2017). Diffusing private data over networks. IEEE Transactions on Control of Network Systems, 5(3):1027–1037.

Le Ny, J. and Pappas, G. J. (2013). Privacy-preserving release of aggregate dynamic models. In Proceedings of the 2nd ACM international conference on High confidence networked systems, pages 49–56.

LGPD (2019). Lei geral de proteção de dados pessoais. [link]. Acesso 17 de fevereiro de 2023.

Lu, Y., Tian, H., Shen, H., and Xu, D. (2018). Privacy preserving classification based on perturbation for network traffic. In Parallel and Distributed Computing, Applications and Technologies: 19th International Conference, PDCAT 2018, Jeju Island, South Korea, August 20-22, 2018, Revised Selected Papers 19, pages 121–132. Springer.

Machanavajjhala, A., He, X., and Hay, M. (2017). Differential privacy in the wild: A tutorial on current practices & open challenges. In Proceedings of the 2017 ACM International Conference on Management of Data, pages 1727–1730.

McSherry, F. D. (2009). Privacy integrated queries: an extensible platform for privacy-preserving data analysis. In Proceedings of the 2009 ACM SIGMOD International Conference on Management of data, pages 19–30.

Mirimir (2018). Collection of User Data by ISPs and Telecom Providers, and Sharing with Third Parties. [link]. Acesso em: 28 de março de 2023.

Sangeetha, S. and Sudha Sadasivam, G. (2019). Privacy of big data: a review. Handbook of big data and iot security, pages 5–23.

Shafiq, M., Yu, X., Laghari, A. A., Yao, L., Karn, N. K., and Abdessamia, F. (2016). Network traffic classification techniques and comparative analysis using machine learning algorithms. In 2016 2nd IEEE International Conference on Computer and Communications (ICCC), pages 2451–2455. IEEE.

Tanenbaum, A. S. and Wetherall, D. (2021). Network Computer 6th Edition. Pearson.

Zhang, J. et al. (2017). Privbayes: Private data release via bayesian networks. ACM Transactions on Database Systems (TODS), 42(4):1–41.

Zhang, X., Hamm, J., Reiter, M. K., and Zhang, Y. (2022). Defeating traffic analysis via differential privacy: a case study on streaming traffic. International Journal of Information Security, 21(3):689–706.
Published
2023-08-06
MONTEIRO, Felipe C.; BRITO, Felipe T.; CHAVES, Iago C.; MACHADO, Javam C.. Compartilhamento de Dados de Tráfego de Rede Utilizando Privacidade Diferencial. In: INTEGRATED SOFTWARE AND HARDWARE SEMINAR (SEMISH), 50. , 2023, João Pessoa/PB. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2023 . p. 296-307. ISSN 2595-6205. DOI: https://doi.org/10.5753/semish.2023.230739.