Integrando BPMN e AIML para construção de fluxos de diálogo para Chatbots
Abstract
Among the languages for specifying the knowledge base of chatbots, there is one that stands out for its simplicity: the Artificial Intelligence Markup Language (AIML). However, designing dialog flows with AIML requires knowledge of their XML tags; in addition, the more complex the flow, the greater the effort to maintain this structure. On the other hand, the Business Process Model and Notation (BPMN) specification provides a series of symbols and patterns for easy visual interpretation. To minimize the complexity in building and maintaining AIML XML flows, we propose a BPMN to AIML converter (BPMN2AIML). To validate the proposal, we carried out a case study where users mapped dialog flows and evaluated their usability, we also created two chatbots and evaluated the interaction of one of them. The experimental results demonstrate that designing visual flows to represent the knowledge base of AIML chatbots with BPMN is possible and apparently more intuitive than working directly with XML.
References
AISB (2019). Mitsuku wins 2019 Loebner Prize and Best Overall Chatbot at AISB X.
Barros, F. d. A. and Tedesco, P. A. (2016). Agentes inteligentes conversacionais: Conceitos básicos e desenvolvimento. 35º JAI-Jornada de Atualização em Informática, pages 169–218.
Borah, B., Pathak, D., and Sarmah, P. (2019). Survey of Textbased Chatbot in Perspective of Recent Technologies. In CICBA 2018: Computational Intelligence, Communications, and Business Analytics, volume 1031, pages 84–96. Springer Singapore.
Costa, J. C. G. (2017). Assistentes Virtuais para Comunicação Empresarial. PhD thesis.
Dumas, M., La Rosa, M., Mendling, J., and Reijers, H. A. (2013). Fundamentals of Business Process Management.
Junior, O. A. d. A. (2017). Beck: Um Chatbot Baseado na Terapia Cognitivo-Comportamental para Apoiar Adolescentes com Depressão. Dissertação de mestrado, UFPE, Recife PE Brasil.
Larisane Kuyven, N., André Antunes, C., João de Barros Vanzin, V., Luis Tavares da Silva, J., Loureiro Krassmann, A., and Margarida Rockenbach Tarouco, L. (2018). Chatbots na educação: uma Revisão Sistemática da Literatura. Renote, 16(1):123–132.
Leopold, H., Mendling, J., and Polyvyanyy, A. (2013). Supporting Process Model Validation through Natural Language Generation. Handbook of Natural Language Processing, Second Edition, X(X):121–144.
López, A., Sànchez-Ferreres, J., Carmona, J., and Padró, L. (2019). From Process Models to Chatbots. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11483 LNCS:383–398.
Neo, G. d. S. (2020). Construção de chatbots AIML com a ajuda de uma ferramenta de modelagem visual baseada na linguagem BPMN. Dissertação de mestrado, UFAL, Maceió AL Brasil.
Neo, G. S., Pereira, O. M., and Neo, A. V. B. S. (2020). Engajando alunos na aula de filosofia com inteligência artificial. In VII Semana Internacional de Pedagogia, number 1, pages 1–12, Maceió AL Brasil.
Oladele, M. I., Sunar, M. S. B., Cheok, A. D., Arovski, S., and Osipyan, H. (2017). Visual Dialog Manager: a Tool for Authoring Conversational Agents. International Conference on Sciences, Engineering and Social Sciences, (September).
OpenAI (2023). GPT-4 Technical Report. 4:1–100.
Raj, S. (2019). Building Chatbots with Python.
Rodríguez-Gil, L., García-Zubia, J., Orduña, P., Villar-Martinez, A., and López-De-Ipiña, D. (2019). New Approach for Conversational Agent Definition by Non-Programmers: A Visual Domain-Specific Language. IEEE Access, 7:5262–5276.
Shum, H.-y., He, X.-d., and Li, D. (2018). From Eliza to XiaoIce: challenges and opportunities with social chatbots. Frontiers of Information Technology & Electronic Engineering, 19(1):10–26.
Silveira, C. (2018). Easy AIML Gerador de códigos AIML. Revista CNEC Educação, pages 86–99.
Soares, J. J. M. (2014). Uma abordagem para a transformação da notação bpmn para a notação de redes de petri. PhD thesis.
Sterling, K. (2019). Python 3.x based aiml 2.0 chatbot interpreter, framework. https://github.com/keiffster/program-y. Accessed: 2019-11-17.
Turing, A. M. (1950). Computing Machinery and Intelligence. Mind, pages 551–621.
Wallace, R. S. (2009). The anatomy of A.L.I.C.E. Parsing the Turing Test. Springer, Dordrecht, pages 181–210.
Weizenbaum, J. (1966). ELIZA A Computer Program For the Study of Natural Language Communication Between Man And Machine. Communications of the ACM, 9(1).
