A Contribution to Home Peritoneal Dialysis Exploring IoT for Data Collection and Availability
Abstract
The approach discussed in this paper, referred to as IoT PD-RPM, is applied to the remote monitoring of patients undergoing peritoneal dialysis, a treatment whose adherence can be enhanced through technological support by leveraging IoT for data acquisition and interoperability with the medical community. A solution is also proposed that integrates database auditing and rulebased alerts to ensure compliance with LGPD regulations. To achieve this, the proposed approach combines a platform for vital sign acquisition, a customizable rules environment for situational analysis and notifications to the medical team, and a remote visualization interface.References
Aniche, M. and van Deursen, A. (2022). Effective system testing strategies for modern software. IEEE Software, 39(3):58–66.
GBD (2019). The institute for health metrics and evaluation. global burden of disease (gbd 2019). Último acesso 15 agosto 2022.
Gîştescu, A.-E., Proca, T., Miluţ, C.-M., and Iftene, A. (2021). Medplus-a cross-platform application that allows remote patient monitoring. Procedia Computer Science, 192:3751–3760.
Gupta, S., Abbas, A. F., and Srivastava, R. (2022). Technology acceptance model (tam): A bibliometric analysis from inception. Journal of Telecommunications and the Digital Economy, 10(3):77–106.
Johnson, L. and Thompson, M. (2020). Enhancing security monitoring with association rule learning: A middleware access case study. Journal of Data Mining and Cybersecurity, 14(4):265–278.
Levin, A., Tonelli, M., Bonventre, J., Coresh, J., Donner, J.-A., Fogo, A. B., Fox, C. S., Gansevoort, R. T., Heerspink, H. J., Jardine, M., et al. (2017). Global kidney health 2017 and beyond: a roadmap for closing gaps in care, research, and policy. The Lancet, 390(10105):1888–1917.
Lima, J. d. C. (2022). Desafios para a adoção de Inteligência Artificial pelo Sistema Único de Saúde (SUS): ética, transparência e interpretabilidade. PhD thesis, Fiocruz, Rio de Janeiro, Brazil.
Liyanage, T., Ninomiya, T., Jha, V., Neal, B., Patrice, H. M., Okpechi, I., Zhao, M.-h., Lv, J., Garg, A. X., Knight, J., et al. (2015). Worldwide access to treatment for end-stage kidney disease: a systematic review. The Lancet, 385(9981):1975–1982.
Mia, M. M. H., Mahfuz, N., Habib, M. R., and Hossain, R. (2021). An internet of things application on continuous remote patient monitoring and diagnosis. In 2021 4th international conference on bio-engineering for smart technologies (BioSMART), pages 1–6, Piscataway, NJ, USA. IEEE, IEEE.
MicroPython (2024). Micropython. Último acesso 15 agosto 2024.
Org, J. (2022). Introdução ao json. Último acesso 15 agosto 2022.
Perera, C., Zaslavsky, A., Christen, P., and Georgakopoulos, D. (2014). Context aware computing for the internet of things: A survey. Communications Surveys Tutorials, IEEE, 16(1):414–454.
Polasi, P. K., Aishwarya, S., Kruthika, P., and Momin, M. K. (2023). An iot-based duplex mode remote health monitoring system. In 2023 International Conference on Recent Advances in Electrical, Electronics, Ubiquitous Communication, and Computational Intelligence (RAEEUCCI), pages 1–5, Piscataway, NJ, USA. IEEE, IEEE.
Sahu, M. L., Atulkar, M., Ahirwal, M. K., and Ahamad, A. (2022). Cloud-based remote patient monitoring system with abnormality detection and alert notification. Mobile Networks and Applications, 27(5):1894–1909.
SAP (2025). STANDARDIZED Technical Architecture Modeling. Acesso em fevereiro de 2025.
Sergi, I., Montanaro, T., Shumba, A. T., Bramanti, A., Ciccarelli, M., Carrizzo, A., Visconti, P., De Vittorio, M., and Patrono, L. (2023). An iot-aware system for remote monitoring of patients with chronic heart failure. In 2023 8th International Conference on Smart and Sustainable Technologies (SpliTech), pages 1–5, Piscataway, NJ, USA. IEEE.
Sesso, R., Lopes, A. A., Thomé, F. S., Lugon, J. R., and Martins, C. T. (2023a). Censo brasileiro de diálise 2022: Análise da prevalência e incidência da doença renal crônica no brasil. Brazilian Journal of Nephrology, 44(1):45–56.
Sesso, R., Lopes, A. A., Thomé, F. S., Lugon, J. R., and Martins, C. T. (2023b). Gastos do sus com doença renal crônica: Uma análise dos custos com terapia renal substitutiva. Brazilian Journal of Nephrology, 44(2):112–120.
Souza, R., Lopes, J., Geyer, C., Cardozo, A., Yamin, A., and Barbosa, J. (2018). An architecture for iot management targeted to context awareness of ubiquitous applications. Journal of Universal Computer Science, 24(10):1452–1471.
Streiner, D. L. (2003). Starting at the beginning: an introduction to coefficient alpha and internal consistency. Journal of personality assessment, 80(1):99–103.
GBD (2019). The institute for health metrics and evaluation. global burden of disease (gbd 2019). Último acesso 15 agosto 2022.
Gîştescu, A.-E., Proca, T., Miluţ, C.-M., and Iftene, A. (2021). Medplus-a cross-platform application that allows remote patient monitoring. Procedia Computer Science, 192:3751–3760.
Gupta, S., Abbas, A. F., and Srivastava, R. (2022). Technology acceptance model (tam): A bibliometric analysis from inception. Journal of Telecommunications and the Digital Economy, 10(3):77–106.
Johnson, L. and Thompson, M. (2020). Enhancing security monitoring with association rule learning: A middleware access case study. Journal of Data Mining and Cybersecurity, 14(4):265–278.
Levin, A., Tonelli, M., Bonventre, J., Coresh, J., Donner, J.-A., Fogo, A. B., Fox, C. S., Gansevoort, R. T., Heerspink, H. J., Jardine, M., et al. (2017). Global kidney health 2017 and beyond: a roadmap for closing gaps in care, research, and policy. The Lancet, 390(10105):1888–1917.
Lima, J. d. C. (2022). Desafios para a adoção de Inteligência Artificial pelo Sistema Único de Saúde (SUS): ética, transparência e interpretabilidade. PhD thesis, Fiocruz, Rio de Janeiro, Brazil.
Liyanage, T., Ninomiya, T., Jha, V., Neal, B., Patrice, H. M., Okpechi, I., Zhao, M.-h., Lv, J., Garg, A. X., Knight, J., et al. (2015). Worldwide access to treatment for end-stage kidney disease: a systematic review. The Lancet, 385(9981):1975–1982.
Mia, M. M. H., Mahfuz, N., Habib, M. R., and Hossain, R. (2021). An internet of things application on continuous remote patient monitoring and diagnosis. In 2021 4th international conference on bio-engineering for smart technologies (BioSMART), pages 1–6, Piscataway, NJ, USA. IEEE, IEEE.
MicroPython (2024). Micropython. Último acesso 15 agosto 2024.
Org, J. (2022). Introdução ao json. Último acesso 15 agosto 2022.
Perera, C., Zaslavsky, A., Christen, P., and Georgakopoulos, D. (2014). Context aware computing for the internet of things: A survey. Communications Surveys Tutorials, IEEE, 16(1):414–454.
Polasi, P. K., Aishwarya, S., Kruthika, P., and Momin, M. K. (2023). An iot-based duplex mode remote health monitoring system. In 2023 International Conference on Recent Advances in Electrical, Electronics, Ubiquitous Communication, and Computational Intelligence (RAEEUCCI), pages 1–5, Piscataway, NJ, USA. IEEE, IEEE.
Sahu, M. L., Atulkar, M., Ahirwal, M. K., and Ahamad, A. (2022). Cloud-based remote patient monitoring system with abnormality detection and alert notification. Mobile Networks and Applications, 27(5):1894–1909.
SAP (2025). STANDARDIZED Technical Architecture Modeling. Acesso em fevereiro de 2025.
Sergi, I., Montanaro, T., Shumba, A. T., Bramanti, A., Ciccarelli, M., Carrizzo, A., Visconti, P., De Vittorio, M., and Patrono, L. (2023). An iot-aware system for remote monitoring of patients with chronic heart failure. In 2023 8th International Conference on Smart and Sustainable Technologies (SpliTech), pages 1–5, Piscataway, NJ, USA. IEEE.
Sesso, R., Lopes, A. A., Thomé, F. S., Lugon, J. R., and Martins, C. T. (2023a). Censo brasileiro de diálise 2022: Análise da prevalência e incidência da doença renal crônica no brasil. Brazilian Journal of Nephrology, 44(1):45–56.
Sesso, R., Lopes, A. A., Thomé, F. S., Lugon, J. R., and Martins, C. T. (2023b). Gastos do sus com doença renal crônica: Uma análise dos custos com terapia renal substitutiva. Brazilian Journal of Nephrology, 44(2):112–120.
Souza, R., Lopes, J., Geyer, C., Cardozo, A., Yamin, A., and Barbosa, J. (2018). An architecture for iot management targeted to context awareness of ubiquitous applications. Journal of Universal Computer Science, 24(10):1452–1471.
Streiner, D. L. (2003). Starting at the beginning: an introduction to coefficient alpha and internal consistency. Journal of personality assessment, 80(1):99–103.
Published
2025-07-20
How to Cite
ALBANDES, Rogério; SOUZA, Alexandre; PIEPER, Leandro; BARCELLOS, Franklin; PERNAS, Ana Marilza; YAMIN, Adenauer.
A Contribution to Home Peritoneal Dialysis Exploring IoT for Data Collection and Availability. In: INTEGRATED SOFTWARE AND HARDWARE SEMINAR (SEMISH), 52. , 2025, Maceió/AL.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2025
.
p. 191-202.
ISSN 2595-6205.
DOI: https://doi.org/10.5753/semish.2025.8193.
