Previsão de demanda de curto prazo usando aprendizado de máquina com dados por telemetria: Um estudo de caso no Brasil
Resumo
Este estudo avalia o desempenho de modelos de aprendizado de máquina na previsão de demanda de curto prazo em um consumidor com geração solar distribuída. Utilizando um conjunto de dados com padrões multisazonais e alta variabilidade, comparamos modelos como Ridge, KNN, LGBM, XGBoost, CatBoost, Random Forest e MLP. Foi aplicada otimização de hiperparâmetros com validação cruzada temporal durante a fase de ajuste. Os resultados mostraram que o Random Forest superou os demais, alcançando um MAE de 8,94 kW, superando o modelo de base em mais de 51%. O XGBoost, por sua vez, apresentou desempenho 49% superior ao modelo de base e tempo de treinamento 16 vezes menor que o Random Forest.Referências
Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M. (2019). Optuna: A nextgeneration hyperparameter optimization framework. In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pages 2623–2631.
Anh, N. T. N., Anh, N. N., Thang, T. N., Solanki, V. K., Crespo, R. G., and Dat, N. Q. (2024). Online sarima applied for short-term electricity load forecasting. Applied Intelligence, 54:1003–1019.
Dash, S. K., Roccotelli, M., Khansama, R. R., Fanti, M. P., and Mangini, A. M. (2021). Long term household electricity demand forecasting based on rnn-gbrt model and a novel energy theft detection method. Applied Sciences.
Dong, X., Deng, S., and Wang, D. (2022). A short-term power load forecasting method based on k-means and svm. Ambient Intelligence and Humanized Computing, 13:5253–5267.
e Silva, D. P., Félix Salles, J. L., Fardin, J. F., and Rocha Pereira, M. M. (2020). Management of an island and grid-connected microgrid using hybrid economic model predictive control with weather data. Applied Energy, 278:115581.
Guaitolini, T. M., Nascimento, E. B., Breder, R. P., Gobbi, R. E., e Silva, D. P., Silva, F. B. B., and Camargo, R. S. (2023). Load curve based on modeling a photovoltaic system, load and weather data - a case study in brazil. In 2023 15th IEEE International Conference on Industry Applications (INDUSCON), pages 248–253. IEEE.
Guo, W., Che, L., Shahidehpour, M., and Wan, X. (2021). Machine-learning based methods in short-term load forecasting. The Electricity Journal, 34:106884.
Hafeez, G., Alimgeer, K. S., and Khan, I. (2020). Electric load forecasting based on deep learning and optimized by heuristic algorithm in smart grid. Applied Energy, 269:114915.
Hodge, B.-M., Lew, D., and Milligan, M. (2013). Short-term load forecast error distributions and implications for renewable integration studies. In IEEE Green Technologies Conference.
Hwang, J., Kim, J.-S., and Song, H. (2022). Handling load uncertainty during on-peak time via dual ess and lstm with load data augmentation. Energies, 15(9):3001.
Jin, X.-B., Zheng, W.-Z., Kong, J.-L., Wang, X.-Y., Bai, Y.-T., Su, T.-L., and Lin, S. (2021). Deep-learning forecasting method for electric power load via attention-based encoder-decoder with bayesian optimization. Energies, 14(6):1596.
Jin, Y., Guo, H., Wang, J., and Song, A. (2020). A hybrid system based on lstm for short-term power load forecasting. Energies, 13(23):6241.
Koukaras, P., Mustapha, A., Mystakidis, A., and Tjortjis, C. (2024). Optimizing building short-term load forecasting: A comparative analysis of machine learning models. Energies, 17(6).
Kumari, P. and Toshniwal, D. (2021). Deep learning models for solar irradiance forecasting: A comprehensive review. Journal of Cleaner Production, 318:128566.
Mohammad, F., Lee, K.-B., and Kim, Y.-C. (2018). Short term load forecasting using deep neural networks. Energies.
Mori, H. and Ogasawara, T. (1993). A recurrent neural network for short-term load forecasting. IEEE Transactions on Power Systems.
Saksornchai, T., Lee, W.-J., Methaprayoon, K., Liao, J. R., and Ross, R. J. (2005). Improve the unit commitment scheduling by using the neural-network-based short-term load forecasting. IEEE Transactions on Industry Applications, 41(1):169–179.
Sousa, A. R. S., da Silva, C., da Silva, J. S. F., and Oliveira, R. R. (2021). Análise de séries temporais. SAGAH, Porto Alegre.
Tziolis, G., Koumis, A., Makrides, G., Lopez-Lorente, J., Livera, A., Georghiou, G. E., Baka, M.-I., and Theocharides, S. (2022). Comparative analysis of machine learning models for short-term net load forecasting in renewable integrated microgrids. In Proceedings of the International Conference on Energy Transmission in the Mediterranean Area (SyNERGY MED).
Anh, N. T. N., Anh, N. N., Thang, T. N., Solanki, V. K., Crespo, R. G., and Dat, N. Q. (2024). Online sarima applied for short-term electricity load forecasting. Applied Intelligence, 54:1003–1019.
Dash, S. K., Roccotelli, M., Khansama, R. R., Fanti, M. P., and Mangini, A. M. (2021). Long term household electricity demand forecasting based on rnn-gbrt model and a novel energy theft detection method. Applied Sciences.
Dong, X., Deng, S., and Wang, D. (2022). A short-term power load forecasting method based on k-means and svm. Ambient Intelligence and Humanized Computing, 13:5253–5267.
e Silva, D. P., Félix Salles, J. L., Fardin, J. F., and Rocha Pereira, M. M. (2020). Management of an island and grid-connected microgrid using hybrid economic model predictive control with weather data. Applied Energy, 278:115581.
Guaitolini, T. M., Nascimento, E. B., Breder, R. P., Gobbi, R. E., e Silva, D. P., Silva, F. B. B., and Camargo, R. S. (2023). Load curve based on modeling a photovoltaic system, load and weather data - a case study in brazil. In 2023 15th IEEE International Conference on Industry Applications (INDUSCON), pages 248–253. IEEE.
Guo, W., Che, L., Shahidehpour, M., and Wan, X. (2021). Machine-learning based methods in short-term load forecasting. The Electricity Journal, 34:106884.
Hafeez, G., Alimgeer, K. S., and Khan, I. (2020). Electric load forecasting based on deep learning and optimized by heuristic algorithm in smart grid. Applied Energy, 269:114915.
Hodge, B.-M., Lew, D., and Milligan, M. (2013). Short-term load forecast error distributions and implications for renewable integration studies. In IEEE Green Technologies Conference.
Hwang, J., Kim, J.-S., and Song, H. (2022). Handling load uncertainty during on-peak time via dual ess and lstm with load data augmentation. Energies, 15(9):3001.
Jin, X.-B., Zheng, W.-Z., Kong, J.-L., Wang, X.-Y., Bai, Y.-T., Su, T.-L., and Lin, S. (2021). Deep-learning forecasting method for electric power load via attention-based encoder-decoder with bayesian optimization. Energies, 14(6):1596.
Jin, Y., Guo, H., Wang, J., and Song, A. (2020). A hybrid system based on lstm for short-term power load forecasting. Energies, 13(23):6241.
Koukaras, P., Mustapha, A., Mystakidis, A., and Tjortjis, C. (2024). Optimizing building short-term load forecasting: A comparative analysis of machine learning models. Energies, 17(6).
Kumari, P. and Toshniwal, D. (2021). Deep learning models for solar irradiance forecasting: A comprehensive review. Journal of Cleaner Production, 318:128566.
Mohammad, F., Lee, K.-B., and Kim, Y.-C. (2018). Short term load forecasting using deep neural networks. Energies.
Mori, H. and Ogasawara, T. (1993). A recurrent neural network for short-term load forecasting. IEEE Transactions on Power Systems.
Saksornchai, T., Lee, W.-J., Methaprayoon, K., Liao, J. R., and Ross, R. J. (2005). Improve the unit commitment scheduling by using the neural-network-based short-term load forecasting. IEEE Transactions on Industry Applications, 41(1):169–179.
Sousa, A. R. S., da Silva, C., da Silva, J. S. F., and Oliveira, R. R. (2021). Análise de séries temporais. SAGAH, Porto Alegre.
Tziolis, G., Koumis, A., Makrides, G., Lopez-Lorente, J., Livera, A., Georghiou, G. E., Baka, M.-I., and Theocharides, S. (2022). Comparative analysis of machine learning models for short-term net load forecasting in renewable integrated microgrids. In Proceedings of the International Conference on Energy Transmission in the Mediterranean Area (SyNERGY MED).
Publicado
20/07/2025
Como Citar
SOUZA, Marcos R. de; SILVA, Danilo P.; PAIXÃO, Thiago M..
Previsão de demanda de curto prazo usando aprendizado de máquina com dados por telemetria: Um estudo de caso no Brasil. In: SEMINÁRIO INTEGRADO DE SOFTWARE E HARDWARE (SEMISH), 52. , 2025, Maceió/AL.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2025
.
p. 345-356.
ISSN 2595-6205.
DOI: https://doi.org/10.5753/semish.2025.8804.
