Personalized Study Guide with LLM and Multi-Agent Architecture
Abstract
Teacher overload and the need for personalization are constant challenges in technical education. This study proposes to mitigate such issues through the use of a recommendation system based on large language models (LLMs) and intelligent agents. The tool collects data provided by students and automatically generates study plans adapted to each learner’s time availability and focus. An evaluation with 16 students, based on the Technology Acceptance Model (TAM), revealed high acceptance, with emphasis on interface clarity and ease of use. The system contributes to more effective pedagogical practices, reduces teacher workload, and preserves critical instructional mediation. It is a viable and scalable solution for contemporary educational contexts.References
Bhatt, S. M., Verbert, K., and Van Den Noortgate, W. (2025). Teachercentric educational recommender systems in K12 practice: Usage and evaluation. Heliyon, 11(2):e42012.
Chen, E., Lee, J.-E., Lin, J., and Koedinger, K. (2024). GPTutor: Great personalized tutor with Large Language Models for personalized learning content generation. arXiv preprint arXiv:2407.09484.
Chrysafiadi, K., Virvou, M., Tsihrintzis, G. A., and Papadopoulos, G. A. (2023). Evaluating the user’s experience, adaptivity and learning outcomes of a fuzzy-based intelligent tutoring system for computer programming for academic students in greece. Education and Information Technologies, 28:6453–6483.
Dantas, E., Costa, A. A. M., Vinicius, M., Perkusich, M. B., de Almeida, H. O., and Perkusich, A. (2019). An effort estimation support tool for agile software development: An empirical evaluation. In Proceedings of the 31st International Conference on Software Engineering and Knowledge Engineering (SEKE), pages 82–116.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3):319–340.
Ferreira, L. C. (2023). Pesquisa mostra que 71% dos professores estão estressados. Agência Brasil (Notícia).
Groq Inc. (2024). The future of AI is agentic... and GROQ. White paper.
Luo, Y. (2024). The use of chatgpt in education: A new path to personalized instruction. Science Insights Education Frontiers, 25(1).
Ma, Y., Wang, L., Zhang, J., Liu, F., and Jiang, Q. (2023). A personalized learning path recommendation method incorporating multi-algorithm. Applied Sciences, 13(10):5946.
Mai, D. T. T., Da, C. V., and Hanh, N. V. (2024). The use of ChatGPT in teaching and learning: a systematic review through SWOT analysis approach. Frontiers in Education, 9.
Marangunić, N. and Granić, A. (2015). Technology acceptance model: A literature review from 1986 to 2013. Universal Access in the Information Society, 14(1):81–95.
Nascimento, A. L., Miranda, A. K. P., da Silva, L. S., Lima, I. Â. d. S. B., Pereira, C. L., Santos, I. V. M., and Feitosa, P. d. C. (2023). Ser docente na pandemia: vivência, sobrecarga e desafios de professores do ensino básico, técnico e tecnológico. Saúde Coletiva (Barueri), 13(149):9417–9427.
Neil, D. (2024). CrewAI based DSA Tutor: Personalized learning with multi-agent systems. Analytics Vidhya Blog.
Ozamiz-Etxebarria, N., Legorburu, I. M., Lipnicki, D. M., and Idoiaga, N. (2023). Prevalence of burnout among teachers during the covid-19 pandemic: A meta-analysis. International Journal of Environmental Research and Public Health, 20(6):4866.
Silva, F. L. d., Slodkowski, B. K., Silva, K. K. A. d., and Cazella, S. C. (2023). A systematic literature review on educational recommender systems for teaching and learning: research trends, limitations and opportunities. Education and Information Technologies, 28:3289–3328.
Wang, X. J., Lee, C., and Mutlu, B. (2025). Learnmate: Enhancing online education with llm-powered personalized learning plans and support. Extended Abstracts of the CHI Conference on Human Factors in Computing Systems (CHI EA ’25), April 26-May 1, 2025, Yokohama, Japan.
Winland, V., Syed, M., and Gutowska, A. (2024). What is CrewAI? IBM Technology Blog.
Zabala, A. (1998). A prática educativa: como ensinar. Artmed.
Zach, A. (2023). A simple explanation of internal consistency. [link]. Acesso em: 23 mar. 2025.
Zimmerman, B. J. (2002). Becoming a self-regulated learner: An overview. Theory into Practice, 41(2):64–70.
Chen, E., Lee, J.-E., Lin, J., and Koedinger, K. (2024). GPTutor: Great personalized tutor with Large Language Models for personalized learning content generation. arXiv preprint arXiv:2407.09484.
Chrysafiadi, K., Virvou, M., Tsihrintzis, G. A., and Papadopoulos, G. A. (2023). Evaluating the user’s experience, adaptivity and learning outcomes of a fuzzy-based intelligent tutoring system for computer programming for academic students in greece. Education and Information Technologies, 28:6453–6483.
Dantas, E., Costa, A. A. M., Vinicius, M., Perkusich, M. B., de Almeida, H. O., and Perkusich, A. (2019). An effort estimation support tool for agile software development: An empirical evaluation. In Proceedings of the 31st International Conference on Software Engineering and Knowledge Engineering (SEKE), pages 82–116.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3):319–340.
Ferreira, L. C. (2023). Pesquisa mostra que 71% dos professores estão estressados. Agência Brasil (Notícia).
Groq Inc. (2024). The future of AI is agentic... and GROQ. White paper.
Luo, Y. (2024). The use of chatgpt in education: A new path to personalized instruction. Science Insights Education Frontiers, 25(1).
Ma, Y., Wang, L., Zhang, J., Liu, F., and Jiang, Q. (2023). A personalized learning path recommendation method incorporating multi-algorithm. Applied Sciences, 13(10):5946.
Mai, D. T. T., Da, C. V., and Hanh, N. V. (2024). The use of ChatGPT in teaching and learning: a systematic review through SWOT analysis approach. Frontiers in Education, 9.
Marangunić, N. and Granić, A. (2015). Technology acceptance model: A literature review from 1986 to 2013. Universal Access in the Information Society, 14(1):81–95.
Nascimento, A. L., Miranda, A. K. P., da Silva, L. S., Lima, I. Â. d. S. B., Pereira, C. L., Santos, I. V. M., and Feitosa, P. d. C. (2023). Ser docente na pandemia: vivência, sobrecarga e desafios de professores do ensino básico, técnico e tecnológico. Saúde Coletiva (Barueri), 13(149):9417–9427.
Neil, D. (2024). CrewAI based DSA Tutor: Personalized learning with multi-agent systems. Analytics Vidhya Blog.
Ozamiz-Etxebarria, N., Legorburu, I. M., Lipnicki, D. M., and Idoiaga, N. (2023). Prevalence of burnout among teachers during the covid-19 pandemic: A meta-analysis. International Journal of Environmental Research and Public Health, 20(6):4866.
Silva, F. L. d., Slodkowski, B. K., Silva, K. K. A. d., and Cazella, S. C. (2023). A systematic literature review on educational recommender systems for teaching and learning: research trends, limitations and opportunities. Education and Information Technologies, 28:3289–3328.
Wang, X. J., Lee, C., and Mutlu, B. (2025). Learnmate: Enhancing online education with llm-powered personalized learning plans and support. Extended Abstracts of the CHI Conference on Human Factors in Computing Systems (CHI EA ’25), April 26-May 1, 2025, Yokohama, Japan.
Winland, V., Syed, M., and Gutowska, A. (2024). What is CrewAI? IBM Technology Blog.
Zabala, A. (1998). A prática educativa: como ensinar. Artmed.
Zach, A. (2023). A simple explanation of internal consistency. [link]. Acesso em: 23 mar. 2025.
Zimmerman, B. J. (2002). Becoming a self-regulated learner: An overview. Theory into Practice, 41(2):64–70.
Published
2025-07-20
How to Cite
GALVÃO FILHO, Kleber José Araujo; PAIVA, Ranilson Oscar Araújo; NEO, Giseldo da Silva; NEO, Alana Viana Borges da Silva; COSTA, Evandro de Barros; FREITAS JÚNIOR, Olival de Gusmão.
Personalized Study Guide with LLM and Multi-Agent Architecture. In: INTEGRATED SOFTWARE AND HARDWARE SEMINAR (SEMISH), 52. , 2025, Maceió/AL.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2025
.
p. 561-572.
ISSN 2595-6205.
DOI: https://doi.org/10.5753/semish.2025.9254.
