Modelagem de Custo Total de Propriedade (TCO) de uma Infraestrutura Computacional em Nuvem

  • Igor W. S. Falcão UFPA
  • Paulo H. A. Pereira UFPA
  • Rafael F. Vieira UFPA
  • Antonio C. Oliveira Jr UFG
  • Daniel S. Souza UFPA
  • Marcos C. R. Seruffo UFPA
  • Diego L. Cardoso UFPA

Resumo


A computação em nuvem, além de promover um modelo de armazena- mento e processamento de dados compartilhados, fortalece o potencial técnico-econômico do CSP (Cloud Service Provider), apresentando inúmeras possibilidades no âmbito computacional. Neste trabalho, é proposto um modelo de custo e um cenário de avaliação com base no TCO (Total Cost of Ownership), avaliando o contexto, aquisição e operação de equipamentos para implantação de infraestruturas em nuvem. Dessa forma, foi possı́vel especificar os principais ativos de infraestruturas tı́picas de nuvem e sobretudo, avaliar seu desempenho financeiro a partir de projeções de custos considerando aspectos que inferem diretamente no retorno de investimentos de um Data Center.

Referências

Ajeh, D. E., Ellman, J., and Keogh, S. (2014). A Cost Modelling System for Cloud Computing. In Computational Science and Its Applications (ICCSA), 2014 14th Inter- national Conference on, pages 74–84. IEEE.

Barroso, L. A., Clidaras, J., and Hölzle, U. (2013). The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines. Synthesis lectures on com- puter architecture, 8(3):1–154.

Cui, Y., Ingalz, C., Gao, T., and Heydari, A. (2017). Total Cost of Ownership Model for Data Center Technology Evaluation. In Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 2017 16th IEEE Intersociety Conference on, pages 936–942. IEEE.

Dell (2018). Press Releases.

Dhirani, L. L., Newe, T., and Nizamani, S. (2018). Can IoT Escape Cloud QoS and Cost Pitfalls. In 2018 12th International Conference on Sensing Technology (ICST), pages 65–70. IEEE.

Fang, Q., Wang, J., Gong, Q., and Song, M. (2017). Thermal-Aware Energy Management of an HPC Data Center via Two-Time-Scale Control. IEEE Transactions on Industrial Informatics, 13(5):2260–2269.

Farias, F., Fiorani, M., Tombaz, S., Mahloo, M., Wosinska, L., Costa, J. C., and Monti, P. (2016). Cost-and energy-efficient backhaul options for heterogeneous mobile network deployments. Photonic Network Communications, 32(3):422–437.

Filiopoulou, E., Mitropoulou, P., Tsadimas, A., Michalakelis, C., Nikolaidou, M., and Anagnostopoulos, D. (2015). Integrating Cost Analysis in the Cloud: A SoS Approach. In Innovations in Information Technology (IIT), 2015 11th International Conference on, pages 278–283. IEEE.

Hardy, D., Kleanthous, M., Sideris, I., Saidi, A. G., Ozer, E., and Sazeides, Y. (2013). An Analytical Framework for Estimating TCO and Exploring Data Center Design Space. In Performance Analysis of Systems and Software (ISPASS), 2013 IEEE International Symposium on, pages 54–63. IEEE.

Hung, S. N., Lee, J., and You, B.-J. (2016). Real-Time Stereo Rectification using Com- pressed Look-up Table with variable Breakpoint Indexing. In Industrial Electronics Society, IECON 2016-42nd Annual Conference of the IEEE, pages 4814–4819. IEEE.

Iyengar, M., David, M., Parida, P., Kamath, V., Kochuparambil, B., Graybill, D., Schultz, M., Gaynes, M., Simons, R., Schmidt, R., et al. (2012). Server Liquid Cooling with Chiller-less Data Center Design to Enable Significant Energy Savings. In Semiconduc- tor Thermal Measurement and Management Symposium (SEMI-THERM), 2012 28th Annual IEEE, pages 212–223. IEEE.

Kozhipurath, J. (2012). Cloud Service Costing Challenges. In Cloud Computing in Emer- ging Markets (CCEM), 2012 IEEE International Conference on, pages 1–6. IEEE.

Lähteenmäki, J., Hämmäinen, H., Zhang, N., and Swan, M. (2016). Cost Modeling of a Network Service Provider Cloud Platform. In Cloud Engineering Workshop (IC2EW), 2016 IEEE International Conference on, pages 148–153. IEEE.

Mateljan, V., Cisic, D., and Ogrizovic, D. (2010). Cloud Database-as-a-Service (daas)- ROI. In MIPRO, 2010 proceedings of the 33rd International convention, pages 1185– 1188. IEEE.

Mell, P. and Grance, T. (2016). The NIST Definition of Cloud Computing. Special Publi- cation 800-145 (2011). Google Scholar.

Monil, M. A. H. and Malony, A. D. (2017). QoS-Aware Virtual Machine Consolidation in Cloud Datacenter. In Cloud Engineering (IC2E), 2017 IEEE International Conference on, pages 81–87. IEEE.

Nivetha, N. and Vijayakumar, D. (2016). Modeling Fuzzy based Replication Strategy to Improve data Availabiity in Cloud Datacenter. In Computing Technologies and Intelli- gent Data Engineering (ICCTIDE), International Conference on, pages 1–6. IEEE.

Pham, C., Tran, N. H., Nguyen, M. N., Ren, S., Saad, W., and Hong, C. S. (2016). HostingVirtual Machines on a Cloud Datacenter: a Matching Theoretic Approach. In Network Operations and Management Symposium (NOMS), 2016 IEEE/IFIP, pages 659–664. IEEE.

Pires, V. A. V., da Silva, M. L., Silva, C. M., Rezende, A. A. P., Cordeiro, S. A., Jacovine, L. A. G., and Soares, N. S. (2015). Economic Viability for Implantation of an Inte- grated Unit of Management of Solid Residuals in the Furniture Industry of ubá, MG. Cerne, 14(4):295–303.

Rahman, M., Despins, C., and Affes, S. (2013). Analysis of CAPEX and OPEX Benefits of Wireless Access Virtualization. In Communications Workshops (ICC), 2013 IEEE International Conference on, pages 436–440. IEEE.

Sharma, B., Thulasiram, R. K., Thulasiraman, P., Garg, S. K., and Buyya, R. (2012). Pricing Cloud Compute Commodities: A Novel Financial Economic Model. In Cluster, Cloud and Grid Computing (CCGrid), 2012 12th IEEE/ACM International Symposium on, pages 451–457. IEEE.
Publicado
09/07/2019
Como Citar

Selecione um Formato
FALCÃO, Igor W. S.; PEREIRA, Paulo H. A.; VIEIRA, Rafael F.; OLIVEIRA JR, Antonio C.; SOUZA, Daniel S.; SERUFFO, Marcos C. R.; CARDOSO, Diego L.. Modelagem de Custo Total de Propriedade (TCO) de uma Infraestrutura Computacional em Nuvem. In: SEMINÁRIO INTEGRADO DE SOFTWARE E HARDWARE (SEMISH), 46. , 2019, Belém. Anais do XLVI Seminário Integrado de Software e Hardware. Porto Alegre: Sociedade Brasileira de Computação, july 2019 . p. 57-68. ISSN 2595-6205. DOI: https://doi.org/10.5753/semish.2019.6567.