I2WAC: Uma Proposta para Gerenciamento de Irrigação Explorando Ciência de Situação na IoT
Resumo
De acordo com a Agência Nacional de Águas (ANA), aproximadamente 46,2% de toda água limpa empregada no Brasil é destinada à irrigação, o que vem motivando a avaliação de alternativas para fornecimento de água às culturas agrı́colas. Considerando este cenário, este artigo apresenta a proposta I 2 WAC, que objetiva explorar Ciência de Situação na tomada da decisão de irrigação, com a perspectiva de minimizar impactos socioambientais. Para avaliação da I 2 WAC foi desenvolvido um protótipo que integra tecnologias IoT open-source ao middleware EXEHDA e explora um serviço de previsão climatológica. Os resultados atingidos se mostraram promissores atingindo uma taxa de acerto de aproximadamente 94% quanto à decisão de irrigação.
Referências
Chavda, R., Kadam, T., Hattangadi, K., and Vora, D. (2018). Smart drip irrigation system using moisture sensors. In ICSCET, pages 1–4. IEEE.
Darksky (2018). Darksky [online]. Último acesso 2 Dezembro 2018.
Erthal, E. S. and Berticilli, R. (2018). Sustentabilidade: Agricultura irrigada e seus im- pactos ambientais. CIÊNCIA & TECNOLOGIA, 2(1):64–74.
Glickman, T. S. and Zenk, W. (2000). Glossary of meteorology. American Meteorological Society.
Goap, A., Sharma, D., Shukla, A., and Rama Krishna, C. (2018). An IoT based smart irrigation management system using Machine learning and open source technologies. Computers and Electronics in Agriculture, 155(May):41–49.
Huschke, R. E. et al. (1959). Glossary of meteorology.
Imteaj, A., Rahman, T., Hossain, M. K., and Zaman, S. (2016). Iot based autonomous percipient irrigation system using raspberry pi. In 2016 19th International Conference on Computer and Information Technology (ICCIT), pages 563–568. IEEE.
Joslyn, S., Nadav-Greenberg, L., and Nichols, R. M. (2009). Probability of precipitation: Assessment and enhancement of end-user understanding. Bulletin of the American Meteorological Society, 90(2):185–194.
Kamienski, C., Soininen, J.-P., Taumberger, M., Fernandes, S., Toscano, A., Cinotti, T. S., Maia, R. F., and Neto, A. T. (2018). Swamp: an iot-based smart water management platform for precision irrigation in agriculture. In 2018 Global Internet of Things Summit (GIoTS), pages 1–6. IEEE.
Koduru, S., Padala, V. G. D. P. R., and Padala, P. (2019). Proceedings of 2nd International Conference on Communication, Computing and Networking, volume 46.
Kumar, A., Surendra, A., Mohan, H., Valliappan, K. M., and Kirthika, N. Internet of things based smart irrigation using regression algorithm. In International Conference on Intelligent Computing, Instrumentation and Control Technologies.
Lopes, J. L., de Souza, R. S., Geyer, C., da Costa, C., Barbosa, J., Pernas, A. M., and Yamin, A. (2014). A middleware architecture for dynamic adaptation in ubiquitous computing. Journal of Universal Compuerter Science, 20(9):1327–1351.
MCU, N. (2018). Node mcu [online]. Último acesso 15 Dezembro 2018
Micropython (2018). Micropython [online]. Último acesso 2 Dezembro 2018.
PENTEADO, S. R. (2010). Manejo da Água e irrigação – em propriedades ecológicas. Via Orgânica.
Perera, C., Zaslavsky, A., Christen, P., and Georgakopoulos, D. (2014). Context aware computing for the internet of things: A survey. Communications Surveys Tutorials, IEEE, 16(1):414–454.
Picoweb (2018). Picoweb [online]. Último acesso 3 Dezembro 2018.
Raspberry (2018). Raspberry [online]. Último acesso 15 Dezembro 2018
Sezer, O. B., Dogdu, E., and Ozbayoglu, A. M. (2018). Context-aware computing, le- arning, and big data in internet of things: a survey. IEEE Internet of Things Journal, 5(1):1–27.
Souza, R., Lopes, J., Geyer, C., Cardozo, A., Yamin, A., and Barbosa, J. (2018). An archi- tecture for iot management targeted to context awareness of ubiquitous applications. Journal of Universal Computer Science, 24(10):1452–1471.