Simulação Distribuída de Algoritmos Quânticos via GPUs
Abstract
This work provides an extension of the D-GM environment to get distributed simulation of quantum algorithms via GPUs. The main contribution of this work consists in the optimization of the environment VirD-GM, conceived in two steps: (i) the theoretical studies and implementation of the abstractions of the Mixed Partial Process defined in the qGM model, focusing on the reduction of the memory consumption regarding multidimensional quantum transformations; (ii) and the distributed/parallel implementation of such abstractions allowing its execution on clusters of GPUs. The results obtained in this work embrace the distribute/parallel simulation of Hadamard gates up to 21 qubits and confirm the performance gain with the increase number of clients.References
Avila, A., Maron, A., Reiser, R., and Pilla, M. (2012). Extending the VirD-GM environment for the distributed execution of quantum processes. In Proceedings of the XIII WSCAD-WIC, pages 1–4.
Avila, A., Maron, A., Reiser, R., and Pilla, M. (2014). Gpu-aware distributed quantum simulation. In Proceedings of 29th Symposium On Applied Computing, pages 1–6.
Gutierrez, E., Romero, S., Trenas, M., and Zapata, E. (2010). Quantum computer simulation using the cuda programming model. Computer Physics Communications, pages 283–300.
Henkel, M. (2010). Quantum computer simulation: New world record on jugene. Available at http://www.hpcwire.com/hpcwire/2010-06-28/ quantum computer simulation new world record on jugene.html (feb. 2013).
Maron, A., Reiser, R., and Pilla, M. (2013). High-performance quantum computing simulation for the quantum geometric machine model. In Cluster, Cloud and Grid Computing (CCGrid), 2013 13th IEEE/ACM International Symposium on, pages 474–481.
Nielsen, M. A. and Chuang, I. L. (2000). Quantum Computation and Quantum Informa tion. Cambridge University Press.
Raedt, K. D., Michielsen, K., Raedt, H. D., Trieu, B., Arnold, G., Richter, M., Lippert, T., Watanabe, H., and Ito, N. (2006). Massive parallel quantum computer simulator. http://arxiv.org/abs/quant-ph/0608239.
Yonghong, Y., Grossman, M., and Sarkar, V. (2009). Jcuda: A programmer-friendly interface for accelerating java programs with cuda. In Euro-Par 2009, pages 1–13, Delft,Netherlands.
Avila, A., Maron, A., Reiser, R., and Pilla, M. (2014). Gpu-aware distributed quantum simulation. In Proceedings of 29th Symposium On Applied Computing, pages 1–6.
Gutierrez, E., Romero, S., Trenas, M., and Zapata, E. (2010). Quantum computer simulation using the cuda programming model. Computer Physics Communications, pages 283–300.
Henkel, M. (2010). Quantum computer simulation: New world record on jugene. Available at http://www.hpcwire.com/hpcwire/2010-06-28/ quantum computer simulation new world record on jugene.html (feb. 2013).
Maron, A., Reiser, R., and Pilla, M. (2013). High-performance quantum computing simulation for the quantum geometric machine model. In Cluster, Cloud and Grid Computing (CCGrid), 2013 13th IEEE/ACM International Symposium on, pages 474–481.
Nielsen, M. A. and Chuang, I. L. (2000). Quantum Computation and Quantum Informa tion. Cambridge University Press.
Raedt, K. D., Michielsen, K., Raedt, H. D., Trieu, B., Arnold, G., Richter, M., Lippert, T., Watanabe, H., and Ito, N. (2006). Massive parallel quantum computer simulator. http://arxiv.org/abs/quant-ph/0608239.
Yonghong, Y., Grossman, M., and Sarkar, V. (2009). Jcuda: A programmer-friendly interface for accelerating java programs with cuda. In Euro-Par 2009, pages 1–13, Delft,Netherlands.
Published
2014-10-08
How to Cite
DE AVILA, Anderson; SCHUMALFUSS, Murilo; REISER, Renata; PILLA, Mauricio; MARON, Adriano.
Simulação Distribuída de Algoritmos Quânticos via GPUs. In: BRAZILIAN SYMPOSIUM ON HIGH PERFORMANCE COMPUTING SYSTEMS (SSCAD), 15. , 2014, São José dos Campos.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2014
.
p. 99-110.
DOI: https://doi.org/10.5753/wscad.2014.15003.
