Target-Oriented Polarity Classification of Opinion in Comments about Political Debate in Portuguese

Abstract


The internet and, especially social media, are fertile ground for publishing opinions on various subjects, products, and services. Traditionally, automatic analysis of opinions has been based on words that denote polarity or emotion. However, with the emergence of large language models like ChatGPT, the way in which we process text for subjective analysis has changed a lot. In this context, this paper aims to investigate the potential of ChatGPT – compared to a neural model for emotion identification in texts, and lexicon-based approaches – in polarity classification oriented towards opinion targets in comments on political debate in Portuguese.

Keywords: Sentiment Analysis, Polarity Classification, Political Domain, Portuguese

References

Akilandeswari, J. and Jothi, G. (2018). Sentiment classification of tweets with non-language features. Procedia Computer Science, 143:426–433. 8th International Conference on Advances in Computing Communications (ICACC-2018).

Appel, O., Chiclana, F., Carter, J., and Fujita, H. (2016). A hybrid approach to the sentiment analysis problem at the sentence level. Knowledge-Based Systems, 108:110–124. New Avenues in Knowledge Bases for Natural Language Processing.

Araújo, M., Pereira, A., and Benevenuto, F. (2020). A comparative study of machine translation for multilingual sentence-level sentiment analysis. Information Sciences, 512:1078–1102.

Assi, F. M., Candido, G. B., dos Santos Silva, L. N., Silva, D. F., and Caseli, H. M. (2022). Ufscar’s team at ABSAPT 2022: using syntax, semantics and context for solving the tasks. In Montes-y-Gómez, M. and et al., editors, Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2022), volume 3202 of CEUR Workshop Proceedings.CEUR-WS.org.

Balage Filho, P. P., Pardo, T. A. S., and Aluísio, S. M. (2013). An evaluation of the Brazilian Portuguese LIWC dictionary for sentiment analysis. In Proceedings of the 9th Brazilian Symposium in Information and Human Language Technology, pages 215–219.

Capellaro, L. and Caseli, H. M. (2021). Análise de polaridade e de tópicos em tweets no domínio da política no Brasil. In Anais do XIII Simpósio Brasileiro de Tecnologia da Informação e da Linguagem Humana, pages 47–55, Porto Alegre, RS, Brasil. SBC.

Carvalho, C. M. A., Nagano, H., and Barros, A. K. (2017). A comparative study for sentiment analysis on election Brazilian news. In Proceedings of the 11th Brazilian Symposium in Information and Human Language Technology, pages 103–111, Uberlândia, Brazil. Sociedade Brasileira de Computação.

Carvalho, P., Sarmento, L., Teixeira, J., and Silva, M. J. (2011). Liars and saviors in a sentiment annotated corpus of comments to political debates. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pages 564–568, Portland, Oregon, USA. Association for Computational Linguistics.

Carvalho, P. and Silva, M. (2015). SentiLex-PT: Principais características e potencialidades. Linguítica, Informática e Tradução: Mundos que se Cruzam, Oslo Studies in Language, 7(1):425–438.

França, T. and Oliveira, J. (2014). Análise de sentimento de tweets relacionados aos protestos que ocorreram no Brasil entre junho e agosto de 2013. In Anais do III Brazilian Workshop on Social Network Analysis and Mining, pages 128–139, Porto Alegre, RS, Brasil. SBC.

Hammes, L. and Freitas, L. (2021). Utilizando BERTimbau para a classificação de emoções em português. In Anais do XIII Simṕosio Brasileiro de Tecnologia da Informação e da Linguagem Humana, pages 56–63, Porto Alegre, RS, Brasil. SBC.

Hung, L. and Alias, S. (2023). Beyond sentiment analysis: A review of recent trends in text based sentiment analysis and emotion detection. Journal of Advanced Computational Intelligence and Intelligent Informatics, 27:84–95.

Liu, B. and Zhang, L. (2012). A survey of opinion mining and sentiment analysis. Mining Text Data, pages 415–463.

Pereira, D. A. (2021). A survey of sentiment analysis in the portuguese language. Artificial Intelligence Review, 54(2):1087–1115.

Schouten, K. and Frasincar, F. (2016). Survey on aspect-level sentiment analysis. IEEE Transactions on Knowledge and Data Engineering, 28(3):813–830.

Souza, F., Nogueira, R., and Lotufo, R. (2020). BERTimbau: Pretrained BERT models for Brazilian portuguese. In Cerri, R. and Prati, R. C., editors, Intelligent Systems, pages 403–417, Cham. Springer International Publishing.

Taboada, M., Brooke, J., Tofiloski, M., Voll, K., and Stede, M. (2011). Lexicon-based methods for sentiment analysis. Computational Linguistics, 37:267–307.

Yadollahi, A., Shahraki, A. G., and Zaiane, O. R. (2017). Current state of text sentiment analysis from opinion to emotion mining. ACM Computing Surveys, 50(2):1–33.

Zhang, L., Wang, S., and Liu, B. (2018). Deep learning for sentiment analysis : A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8.
Published
2023-09-25
SENO, Eloize R. Marques; ANNO, Fábio S. Igarashi; LAZARINI, Lucas; CASELI, Helena M.. Target-Oriented Polarity Classification of Opinion in Comments about Political Debate in Portuguese. In: BRAZILIAN SYMPOSIUM IN INFORMATION AND HUMAN LANGUAGE TECHNOLOGY (STIL), 14. , 2023, Belo Horizonte/MG. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2023 . p. 84-93. DOI: https://doi.org/10.5753/stil.2023.233938.