Desenvolvimento de uma luva com rastreamento de dedos e monitoramento fisiológico para aplicações de Realidade Virtual

  • Samuel Antunes Vieira Universidade de Passo Fundo
  • Rafael Rieder Universidade de Passo Fundo

Resumo


VR Wear é um protótipo vestível no qual se busca provar o conceito de rastreamento de dedos, de baixo custo, para ambientes virtuais imersivos projetados na game engine Unity. O dispositivo também permite o acoplamento de sensores de monitoramento fisiológico, fornecendo um acessório multifuncional capaz de ser utilizado em aplicações interativas de diferentes propósitos. Este artigo descreve projetos similares, os conceitos relacionados, o projeto e o desenvolvimento do VR Wear, e apresenta testes iniciais do equipamento.

Palavras-chave: finger tracking, glove, Unity, Virtual Reality, wearable

Referências

John Abella and Emel Demircan. 2019. A multi-body simulation framework for live motion tracking and analysis within the unity environment. In 2019 16th International Conference on Ubiquitous Robots (UR). IEEE, Jeju, Korea, 654–659.

Apple. 2019. Watch Series 4. https://www.apple.com/apple-watch-series-4/

Arduino. 2018. Datasheet: Lilypad. https://www.mouser.com/catalog/specsheets/LilyPad.pdf

Ke-Yu Chen, Shwetak N. Patel, and Sean Kelle. 2016. Finexus: Tracking Precise Motions of Multiple Fingertips Using Magnetic Sensing. In CHI ’16: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. ACM, San Jose, USA, 1504-1514.

Inrak Choi, Eyal Ofek, Hrvoje Benko, Mike Sinclair, and Christian Holz. 2018. Claw: A multifunctional handheld haptic controller for grasping, touching, and triggering in virtual reality. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. ACM, Montreal, Canada, 1–13.

James Connolly, Joan Condell, Brendan O’Flynn, Javier Torres Sanchez, and Philip Gardiner. 2017. IMU sensor-based electronic goniometric glove for clinical finger movement analysis. IEEE Sensors Journal 18, 3 (2017), 1273–1281.

Xavier de Tinguy, Thomas Howard, Claudio Pacchierotti, Maud Marchal, and Anatole Lécuyer. 2020. Weatavix: wearable actuated tangibles for virtual reality experiences. In International Conference on Human Haptic Sensing and Touch Enabled Computer Applications. Springer, Leiden, Netherlands, 262–270.

HTC. 2019. VIVE Cosmos. https://www.vive.com/eu/cosmos

InvenSense. 2013. Datasheet: MPU-6000 and MPU-6050 Product Specification Revision 3.4. https://www.invensense.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf

InvenSense. 2014. Datasheet: MPU9250 Product Specification Revision 1.1. http://www.invensense.com/wp-content/uploads/2015/02/PS-MPU-9250A-01-v1.1.pdf

Itead. 2010. Datasheet: HC-05. http://www.electronicaestudio.com/docs/istd016A.pdf

Cédric Kervegant, Félix Raymond, Delphine Graeff, and Julien Castet. 2017. Touch hologram in mid-air. In ACM SIGGRAPH 2017 Emerging Technologies. ACM, Los Angeles, USA, 1–2.

Mingyu Kim, Changyu Jeon, and Jinmo Kim. 2017. A study on immersion and presence of a portable hand haptic system for immersive virtual reality. Sensors 17, 5 (2017), 1141.

Win Tun Latt, Kalyana Chakravarthy Veluvolu, and Wei Tech Ang. 2011. Drift-Free Position Estimation of Periodic or Quasi-Periodic Motion Using Inertial Sensors. Sensors 11, 6 (2011), 5931–5951. https://doi.org/10.3390/s110605931

Joseph J LaViola Jr, Ernst Kruijff, Ryan P McMahan, Doug Bowman, and Ivan P Poupyrev. 2017. 3D user interfaces: theory and practice. Addison-Wesley Professional, New York, USA.

Sebastian Madgwick. 2012. Open source IMU and AHRS algorithms. https://x-io.co.uk/open-source-imu-and-ahrs-algorithms/

Steve Mann. 1998. Humanistic computing: ’WearComp’ as a new framework and application for intelligent signal processing. Proc. IEEE 86, 11 (1998), 2123–2151.

Maxim. 2014. Datasheet: MAX30100. https://datasheets.maximintegrated.com/en/ds/MAX30100.pdf

Luca Micelli, David Acosta, Alvaro Uribe-Quevedo, Fabrizio Lamberti, and Bill Kapralos. 2018. Extending Upper Limb User Interactions in AR, VR and MR Headsets Employing a Custom-Made Wearable Device. In 2018 9th International Conference on Information, Intelligence, Systems and Applications (IISA). IEEE, Zakynthos, Greece, 1–4.

Claudio Pacchierotti, Stephen Sinclair, Massimiliano Solazzi, Antonio Frisoli, Vincent Hayward, and Domenico Prattichizzo. 2017. Wearable haptic systems for the fingertip and the hand: taxonomy, review, and perspectives. IEEE transactions on haptics 10, 4 (2017), 580–600.

Robert J Seidel and Paul R Chatelier. 2013. Virtual Reality, Training’s Future?: Perspectives on Virtual Reality and Related Emerging Technologies. Springer, New York, USA.

Simon Tatham. 1999. PuTTY. https://www.putty.org/

Unity. 2021. Unity Real-Time Development Platform | 3D, 2D VR and AR Engine. https://unity.com

Velleman. 2020. Esp32 wearable development board. https://www.velleman.eu/products/view/?id=449192

Mariusz P Wilk, Javier Torres-Sanchez, Salvatore Tedesco, and Brendan O’Flynn. 2018. Wearable human computer interface for control within immersive VAMR gaming environments using data glove and hand gestures. In 2018 IEEE Games, Entertainment, Media Conference (GEM). IEEE, Galway, Ireland, 1–9.
Publicado
18/10/2021
Como Citar

Selecione um Formato
VIEIRA, Samuel Antunes; RIEDER, Rafael. Desenvolvimento de uma luva com rastreamento de dedos e monitoramento fisiológico para aplicações de Realidade Virtual. In: WORKSHOP DE INICIAÇÃO CIENTÍFICA - SIMPÓSIO DE REALIDADE VIRTUAL E AUMENTADA (SVR), 23. , 2021, Evento Online. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2021 . p. 23-27. DOI: https://doi.org/10.5753/svr_estendido.2021.17657.