An Industry View about Legacy Systems
Abstract
Systems considered legacy are often associated with several management challenges. The objective of this article is to present the perception of professionals in the Brazilian software development industry about what is understood as a legacy system, the difficulties arising from its maintenance, as well as the criteria used to help decide the best evolution strategy. Through a survey, the perceptions of 33 professionals were collected. The results show that professionals understand legacy systems as systems developed some time ago, with technology that is now obsolete, but which are still useful for organizations. The main challenges when dealing with this type of system are the difficulty in understanding the code and the scarcity of human resources. The main criterion taken into account when evaluating what to do with the system is the cost involved in maintenance. Possible decisions that can be made after the assessment include continuing maintenance, replacing and modernizing the software.References
Agilar, E., Almeida, R., and Canedo, E. (2016). A systematic mapping study on legacy system modernization. In SEKE, pages 345–350.
Bennett, K. (1995). Legacy systems: coping with success. IEEE Software, 12(1):19–23.
Bennett, K. H., Ramage, M., and Munro, M. (1999). Decision model for legacy systems. IEEE Software, 146(3):153–159.
Bianchi, A., Caivano, D., Marengo, V., and Visaggio, G. (2003). Iterative reengineering of legacy systems. IEEE Trans. Softw. Eng., 29(3):225–241.
Chervenski, A. S. and Bordin, A. S. (2020). Understanding legacy systems in the light of grounded theory. In Proceedings of the XXXIV Brazilian Symposium on Software Engineering, SBES ’20, page 344–353, New York, NY, USA. Association for Computing Machinery.
Crotty, J. and Horrocks, I. (2017). Managing legacy system costs: A case study of a meta-assessment model to identify solutions in a large financial services company. Applied Computing and Informatics, 13(2):175–183.
De Lucia, A., Fasolino, A. R., and Pompella, E. (2001). A decisional framework for legacy system management. IEEE International Conference on Software Maintenance, ICSM, pages 642–653.
Johann, S. (2016). Dave thomas on innovating legacy systems. IEEE Software, (2):105–108.
Khadka, R., Batlajery, B. V., Saeidi, A. M., Jansen, S., and Hage, J. (2014). How do professionals perceive legacy systems and software modernization? ICSE 2014 Proceedings of the 36th International Conference on Software Engineering, pages 36–47.
Kitchenham, B. and Pfleeger, S. L. (2002). Principles of survey research: part 5: populations and samples. SIGSOFT Softw. Eng. Notes, 27(5):17–20.
Lopes, J., Gaedicke, L., and Bordin, A. (2018). Um mapeamento sistemático preliminar sobre frameworks de avaliação de sistemas legados. In Anais da II Escola Regional de Engenharia de Software, pages 65–72, Porto Alegre, RS, Brasil. SBC.
Martins, D., Chervenski, A., and Bordin, A. (2017). Identificação de características de sistemas legados a partir da análise de conteúdo da literatura. In Anais da I Escola Regional de Engenharia de Software, pages 81–88, Porto Alegre, RS, Brasil. SBC.
Molleri, J. S., Petersen, K., and Mendes, E. (2016). Survey guidelines in software engineering: An annotated review. In Proceedings of the 10th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, ESEM ’16, New York, NY, USA. Association for Computing Machinery.
O’Byrne, P. and Wu, B. (2000). Lace frameworks and technique-identifying the legacy status of a business information system from the perspectives of its causes and effects. In Proceedings International Symposium on Principles of Software Evolution, pages 170–174.
Rajlich, V. (2014). Software evolution and maintenance. In Future of Software Engineering Proceedings, FOSE 2014, page 133–144, New York, NY, USA. Association for Computing Machinery.
Ralph, P., bin Ali, N., Baltes, S., Bianculli, D., and et al., J. D. (2021). Empirical standards for software engineering research.
Ransom, J., Sommerville, I., and Warren, I. (1998). A Method for Assessing Legacy Systems for Evolution. IEEE.
Strauss, A. and Corbin, J. (2008). Pesquisa qualitativa: técnicas e procedimentos para o desenvolvimento de teoria fundamentada. Porto Alegre: Artmed.
Wohlin, C., Runeson, P., Hst, M., Ohlsson, M. C., Regnell, B., and Wessln, A. (2012). Experimentation in Software Engineering. Springer Publishing Company, Incorporated.
Bennett, K. (1995). Legacy systems: coping with success. IEEE Software, 12(1):19–23.
Bennett, K. H., Ramage, M., and Munro, M. (1999). Decision model for legacy systems. IEEE Software, 146(3):153–159.
Bianchi, A., Caivano, D., Marengo, V., and Visaggio, G. (2003). Iterative reengineering of legacy systems. IEEE Trans. Softw. Eng., 29(3):225–241.
Chervenski, A. S. and Bordin, A. S. (2020). Understanding legacy systems in the light of grounded theory. In Proceedings of the XXXIV Brazilian Symposium on Software Engineering, SBES ’20, page 344–353, New York, NY, USA. Association for Computing Machinery.
Crotty, J. and Horrocks, I. (2017). Managing legacy system costs: A case study of a meta-assessment model to identify solutions in a large financial services company. Applied Computing and Informatics, 13(2):175–183.
De Lucia, A., Fasolino, A. R., and Pompella, E. (2001). A decisional framework for legacy system management. IEEE International Conference on Software Maintenance, ICSM, pages 642–653.
Johann, S. (2016). Dave thomas on innovating legacy systems. IEEE Software, (2):105–108.
Khadka, R., Batlajery, B. V., Saeidi, A. M., Jansen, S., and Hage, J. (2014). How do professionals perceive legacy systems and software modernization? ICSE 2014 Proceedings of the 36th International Conference on Software Engineering, pages 36–47.
Kitchenham, B. and Pfleeger, S. L. (2002). Principles of survey research: part 5: populations and samples. SIGSOFT Softw. Eng. Notes, 27(5):17–20.
Lopes, J., Gaedicke, L., and Bordin, A. (2018). Um mapeamento sistemático preliminar sobre frameworks de avaliação de sistemas legados. In Anais da II Escola Regional de Engenharia de Software, pages 65–72, Porto Alegre, RS, Brasil. SBC.
Martins, D., Chervenski, A., and Bordin, A. (2017). Identificação de características de sistemas legados a partir da análise de conteúdo da literatura. In Anais da I Escola Regional de Engenharia de Software, pages 81–88, Porto Alegre, RS, Brasil. SBC.
Molleri, J. S., Petersen, K., and Mendes, E. (2016). Survey guidelines in software engineering: An annotated review. In Proceedings of the 10th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, ESEM ’16, New York, NY, USA. Association for Computing Machinery.
O’Byrne, P. and Wu, B. (2000). Lace frameworks and technique-identifying the legacy status of a business information system from the perspectives of its causes and effects. In Proceedings International Symposium on Principles of Software Evolution, pages 170–174.
Rajlich, V. (2014). Software evolution and maintenance. In Future of Software Engineering Proceedings, FOSE 2014, page 133–144, New York, NY, USA. Association for Computing Machinery.
Ralph, P., bin Ali, N., Baltes, S., Bianculli, D., and et al., J. D. (2021). Empirical standards for software engineering research.
Ransom, J., Sommerville, I., and Warren, I. (1998). A Method for Assessing Legacy Systems for Evolution. IEEE.
Strauss, A. and Corbin, J. (2008). Pesquisa qualitativa: técnicas e procedimentos para o desenvolvimento de teoria fundamentada. Porto Alegre: Artmed.
Wohlin, C., Runeson, P., Hst, M., Ohlsson, M. C., Regnell, B., and Wessln, A. (2012). Experimentation in Software Engineering. Springer Publishing Company, Incorporated.
Published
2024-09-30
How to Cite
BORDIN, Andréa Sabedra; GARCIA, Luiza Carolina Miranda.
An Industry View about Legacy Systems. In: WORKSHOP ON SOFTWARE VISUALIZATION, EVOLUTION AND MAINTENANCE (VEM), 12. , 2024, Curitiba/PR.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2024
.
p. 137-148.
DOI: https://doi.org/10.5753/vem.2024.3914.
