Towards Cognitive Service Delivery on B5G through AIaaS Architecture

  • Larissa Ferreira Rodrigues Moreira UFV / UFU
  • Rodrigo Moreira UFV
  • Flávio de Oliveira Silva UFU / University of Minho
  • André Ricardo Backes UFSCar

Resumo


Artificial Intelligence (AI) is pivotal in advancing mobile network systems by facilitating smart capabilities and automation. The transition from 4G to 5G has substantial implications for AI in consolidating a network predominantly geared towards business verticals. In this context, 3GPP has specified and introduced the Network Data Analytics Function (NWDAF) entity at the network’s core to provide insights based on AI algorithms to benefit network orchestration. This paper proposes a framework for evolving NWDAF that presents the interfaces necessary to further empower the core network with AI capabilities B5G and 6G. In addition, we identify a set of research directions for realizing a distributed e-NWDAF.

Referências

3GPP (2023). 5G System; Network Data Analytics Services; Stage 3. Technical Report TR 29.520 V15.3.0 (2019-04), 3GPP.

Baccour, E., Allahham, M. S., Erbad, A., Mohamed, A., Hussein, A. R., and Hamdi, M. (2023). Zero Touch Realization of Pervasive Artificial Intelligence as a Service in 6G Networks. IEEE Communications Magazine, 61(2):110–116.

Brilhante, D. d. S., Manjarres, J. C., Moreira, R., de Oliveira Veiga, L., de Rezende, J. F., Müller, F., Klautau, A., Leonel Mendes, L., and P. de Figueiredo, F. A. (2023). A Literature Survey on AI-Aided Beamforming and Beam Management for 5G and 6G Systems. Sensors, 23(9).

Cerar, G. and Hribar, J. (2023). Machine Learning Operations Model Store: Optimizing Model Selection for AI as a Service. In 2023 International Balkan Conference on Communications and Networking (BalkanCom), pages 1–5, İstanbul, Turkiye. IEEE.

Coronado, E., Behravesh, R., Subramanya, T., Fernàndez-Fernàndez, A., Siddiqui, M. S., Costa-Pérez, X., and Riggio, R. (2022). Zero touch management: A survey of network automation solutions for 5g and 6g networks. IEEE Communications Surveys & Tutorials, 24(4):2535–2578.

Fiore, M. (2023). Full Network Sensing: Architecting 6G Beyond Communications. IEEE Network, 37(3):232–239.

Fortuna, C., Mušić, D., Cerar, G., Čampa, A., Kapsalis, P., and Mohorčič, M. (2023). On-Premise Artificial Intelligence as a Service for Small and Medium Size Setups. Springer International Publishing, Cham.

Gkonis, P. K., Nomikos, N., Trakadas, P., Sarakis, L., Xylouris, G., Masip-Bruin, X., and Martrat, J. (2024). Leveraging network data analytics function and machine learning for data collection, resource optimization, security and privacy in 6g networks. IEEE Access, 12:21320–21336.

Guntupalli, N. and Rudramalla, V. (2023). Artificial intelligence as a service: Providing integrity and confidentiality. In Morusupalli, R., Dandibhotla, T. S., Atluri, V. V., Windridge, D., Lingras, P., and Komati, V. R., editors, Multi-disciplinary Trends in Artificial Intelligence, pages 309–315, Cham. Springer Nature Switzerland.

Hajipour, V., Hekmat, S., and Amini, M. (2023). A value-oriented Artificial Intelligence-as-a-Service business plan using integrated tools and services. Decision Analytics Journal, page 100302.

Hossain, M. A., Hossain, A. R., Liu, W., Ansari, N., Kiani, A., and Saboorian, T. (2023). A Distributed Collaborative Learning Approach in 5G+ Core Networks. IEEE Network, pages 1–8.

Ishteyaq, I., Muzaffar, K., Shafi, N., and Alathbah, M. A. (2024). Unleashing the Power of Tomorrow: Exploration of Next Frontier With 6G Networks and Cutting Edge Technologies. IEEE Access, 12:29445–29463.

Jeon, Y. and Pack, S. (2024). Hierarchical Network Data Analytics Framework for 6G Network Automation: Design and Implementation. IEEE Internet Computing, pages 1–9.

Li, Y., Huang, J., Sun, Q., Sun, T., and Wang, S. (2021). Cognitive service architecture for 6g core network. IEEE Transactions on Industrial Informatics, 17(10):7193–7203.

Manias, D. M., Chouman, A., and Shami, A. (2022). An NWDAF Approach to 5G Core Network Signaling Traffic: Analysis and Characterization. In GLOBECOM 2022 - 2022 IEEE Global Communications Conference, pages 6001–6006.

Moreira, R. and Silva, F. (2021). Towards 6G Network Slicing. In Anais do I Workshop de Redes 6G, pages 25–30, Porto Alegre, RS, Brasil. SBC.

Rodrigues Moreira, L. F., Moreira, R., Travençolo, B. A. N., and Backes, A. R. (2023). An artificial intelligence-as-a-service architecture for deep learning model embodiment on low-cost devices: A case study of covid-19 diagnosis. Applied Soft Computing, 134:110014.

Shah, F., Anwar, A., ul haq, I., AlSalman, H., Hussain, S., and Al-Hadhrami, S. (2022). Artificial Intelligence as a Service for Immoral Content Detection and Eradication. Scientific Programming, 2022:6825228.

Shen, X., Gao, J., Wu, W., Li, M., Zhou, C., and Zhuang, W. (2022). Holistic network virtualization and pervasive network intelligence for 6g. IEEE Communications Surveys & Tutorials, 24(1):1–30.

Silva, C., Cruz, A., Andrade, R., and Rodrigues, E. (2023). Requisitos e Desafios de Segurança e Privacidade em Redes 6G. In Anais do III Workshop de Redes 6G, pages 19–24, Porto Alegre, RS, Brasil. SBC.

Slamnik-Kriještorac, N., Landi, G., Brenes, J., Vulpe, A., Suciu, G., Carlan, V., Trichias, K., Kotinas, I., Municio, E., Ropodi, A., and Marquez-Barja, J. M. (2022). Network Applications (NetApps) as a 5G booster for Transport & Logistics (T&L) Services: The VITAL-5G approach. In 2022 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), pages 279–284.

Zhang, W., Zeadally, S., Li, W., Zhang, H., Hou, J., and Leung, V. C. M. (2023). Edge AI as a Service: Configurable Model Deployment and Delay-Energy Optimization With Result Quality Constraints. IEEE Transactions on Cloud Computing, 11(2):1954–1969.
Publicado
20/05/2024
MOREIRA, Larissa Ferreira Rodrigues; MOREIRA, Rodrigo; SILVA, Flávio de Oliveira; BACKES, André Ricardo. Towards Cognitive Service Delivery on B5G through AIaaS Architecture. In: WORKSHOP DE REDES 6G (W6G), 4. , 2024, Niterói/RJ. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024 . p. 1-8. DOI: https://doi.org/10.5753/w6g.2024.3304.