Procedimento de Acesso Aleatório em Redes 5G/6G Integradas com Satélites de Órbita Terrestre Baixa
Resumo
No contexto das redes móveis, os satélites de órbita terrestre baixa (LowEarth Orbit - LEO) podem funcionar em várias capacidades, sendo possível estender a cobertura da rede terrestre para áreas remotas ou de difícil acesso, onde a implantação de infraestrutura terrestre é impraticável. Além disso, devido à sua capacidade de fornecer comunicação de baixa latência e alto rendimento, os satélites LEO complementam as redes terrestres ao melhorar a conectividade para veículos em movimento, como aviões e navios, ou oferecem serviços de emergência críticos em áreas afetadas por desastres. No entanto, são poucos os trabalhos na literatura que focam em relacionar as tecnologias existentes em satélites LEO com redes móveis como o 5G e o 6G. Portanto, este trabalho explora o uso de técnicas de acesso aleatório em satélites LEO, de forma a demonstrar os avanços para habilitar o uso desta tecnologia em redes 5G e 6G.
Palavras-chave:
Acesso Aleatório, NTN, Satélite LEO, 5G, 6G
Referências
3GPP. (2018). NR; Overall description; Stage-2. Technical Specification (TS) 38.300, 3rd Generation Partnership Project (3GPP). Version 15.0.0.
3GPP. (2019). Solutions for NR to support non-terrestrial networks (NTN). Technical Report ATIS.3GPP.38.821.V1600, ATIS. 3GPP TR 38.821 V16.0.0 (Release 16).
3GPP. (2020). Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2. Technical Specification (TS) 38.300, 3rd Generation Partnership Project (3GPP). Version 16.0.0.
3GPP. (2022a). 5G; NR; NR and NG-RAN overall description; Stage-2 (3GPP TS 38.300 Version 17.1.0 Release 17). Technical Report ETSI TS 138 300 V17.1.0, ETSI. Release 17.
3GPP. (2022b). 5G; NR; Radio Resource Control (RRC); Protocol Specification (3GPP TS 38.331 Version 17.1.0 Release 17). Technical Report ETSI TS 138 331 V17.1.0, ETSI. Release 17.
Abbas, R., Huang, T., Shahab, B., Shirvanimoghaddam, M., Li, Y., & Vucetic, B. (2020). Grant-free non-orthogonal multiple access: A key enabler for 6G-IoT. CoRR, abs/2003.10257.
Cui, H., Zhang, J., Geng, Y., Xiao, Z., Sun, T., Zhang, N., Liu, J., Wu, Q., & Cao, X. (2022). Space-air-ground integrated network (SAGIN) for 6G: Requirements, architecture, and challenges. China Communications, 19(2), 90–108.
Huang, X., & Chen, P. (2024). Mobility management scheme in integrated satellite-terrestrial communication system. In 2024 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), 1–6. IEEE.
Islam, S. M. R., Avazov, N., Dobre, O. A., & Kwak, K.-S. (2017). Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges. IEEE Communications Surveys Tutorials, 19(2), 721–742.
Jehan, A., & Zeeshan, M. (2022). Comparative performance analysis of code-domain NOMA and power-domain NOMA. In 2022 16th International Conference on Ubiquitous Information Management and Communication (IMCOM), 1–6.
Kodheli, O., Lagunas, E., Maturo, N., Sharma, S. K., Shankar, B., Montoya, J. F. M., Duncan, J. C. M., Spano, D., Chatzinotas, S., Kisseleff, S., Querol, J., Lei, L., Vu, T. X., & Goussetis, G. (2021). Satellite communications in the new space era: A survey and future challenges. IEEE Communications Surveys Tutorials, 23(1), 70–109.
Lee, J.-H., Park, C., Park, S., & Molisch, A. F. (2023). Handover protocol learning for LEO satellite networks: Access delay and collision minimization. IEEE Transactions on Wireless Communications, 23(7), 7624–7637.
Lee, J.-H., Seo, H., Park, J., Bennis, M., & Ko, Y.-C. (2022). Learning emergent random access protocol for LEO satellite networks. IEEE Transactions on Wireless Communications, 22(1), 257–269.
Lee, J.-I., Hsu, Y.-H., & Sun, S.-S. (2024). A DRL-based NOMA power allocation scheme for LEO satellite networks. In 2024 IEEE 100th Vehicular Technology Conference (VTC2024-Fall), 1–5. IEEE.
Liang, Y., Li, X., Zhang, J., & Ding, Z. (2017). Non-orthogonal random access for 5G networks. IEEE Transactions on Wireless Communications, 16(7), 4817–4831.
Lin, X., & Lee, N. (2021). 5G and Beyond: Fundamentals and Standards. Springer Cham, 1st edition.
Majamaa, M., Martikainen, H., Puttonen, J., & Hämäläinen, T. (2023). Satellite-assisted multi-connectivity in beyond 5G. In 2023 IEEE 24th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), 413–418. IEEE.
Mao, Y., Clerckx, B., & Li, V. O. (2018). Rate-splitting multiple access for downlink communication systems: Bridging, generalizing, and outperforming SDMA and NOMA. EURASIP Journal on Wireless Communications and Networking, (133).
Mao, Y., Dizdar, O., Clerckx, B., Schober, R., Popovski, P., & Poor, H. V. (2022). Rate-splitting multiple access: Fundamentals, survey, and future research trends. IEEE Communications Surveys Tutorials, 24(4), 2073–2126.
Nikopour, H., & Baligh, H. (2013). Sparse code multiple access. In 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), 332–336.
Saarnisaari, H., Laiyemo, A. O., & de Lima, C. H. M. (2019). Random access process analysis of 5G new radio based satellite links. In 2019 IEEE 2nd 5G World Forum (5GWF), 654–658.
Shaat, M., & Caus, M. (2024). Efficient radio resource management for rate maximization in LEO multi-satellite systems. In 2024 3rd International Conference on 6G Networking (6GNet), 102–106. IEEE.
Wang, Q., Chen, S., Yang, C., Qi, W., Zong, J., Xia, X., & Wang, D. (2024). Energy-efficient task split and resource allocation in LEO satellites assisted IoT network. IEEE Internet of Things Journal.
Ye, N., Yu, J., Wang, A., & Zhang, R. (2022). Help from space: Grant-free massive access for satellite-based IoT in the 6G era. Digital Communications and Networks, 8(2), 215–224.
Zhen, L., Bashir, A. K., Yu, K., Al-Otaibi, Y. D., Foh, C. H., & Xiao, P. (2020). Energy-efficient random access for LEO satellite-assisted 6G internet of remote things. IEEE Internet of Things Journal, 8(7), 5114–5128.
3GPP. (2019). Solutions for NR to support non-terrestrial networks (NTN). Technical Report ATIS.3GPP.38.821.V1600, ATIS. 3GPP TR 38.821 V16.0.0 (Release 16).
3GPP. (2020). Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2. Technical Specification (TS) 38.300, 3rd Generation Partnership Project (3GPP). Version 16.0.0.
3GPP. (2022a). 5G; NR; NR and NG-RAN overall description; Stage-2 (3GPP TS 38.300 Version 17.1.0 Release 17). Technical Report ETSI TS 138 300 V17.1.0, ETSI. Release 17.
3GPP. (2022b). 5G; NR; Radio Resource Control (RRC); Protocol Specification (3GPP TS 38.331 Version 17.1.0 Release 17). Technical Report ETSI TS 138 331 V17.1.0, ETSI. Release 17.
Abbas, R., Huang, T., Shahab, B., Shirvanimoghaddam, M., Li, Y., & Vucetic, B. (2020). Grant-free non-orthogonal multiple access: A key enabler for 6G-IoT. CoRR, abs/2003.10257.
Cui, H., Zhang, J., Geng, Y., Xiao, Z., Sun, T., Zhang, N., Liu, J., Wu, Q., & Cao, X. (2022). Space-air-ground integrated network (SAGIN) for 6G: Requirements, architecture, and challenges. China Communications, 19(2), 90–108.
Huang, X., & Chen, P. (2024). Mobility management scheme in integrated satellite-terrestrial communication system. In 2024 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), 1–6. IEEE.
Islam, S. M. R., Avazov, N., Dobre, O. A., & Kwak, K.-S. (2017). Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges. IEEE Communications Surveys Tutorials, 19(2), 721–742.
Jehan, A., & Zeeshan, M. (2022). Comparative performance analysis of code-domain NOMA and power-domain NOMA. In 2022 16th International Conference on Ubiquitous Information Management and Communication (IMCOM), 1–6.
Kodheli, O., Lagunas, E., Maturo, N., Sharma, S. K., Shankar, B., Montoya, J. F. M., Duncan, J. C. M., Spano, D., Chatzinotas, S., Kisseleff, S., Querol, J., Lei, L., Vu, T. X., & Goussetis, G. (2021). Satellite communications in the new space era: A survey and future challenges. IEEE Communications Surveys Tutorials, 23(1), 70–109.
Lee, J.-H., Park, C., Park, S., & Molisch, A. F. (2023). Handover protocol learning for LEO satellite networks: Access delay and collision minimization. IEEE Transactions on Wireless Communications, 23(7), 7624–7637.
Lee, J.-H., Seo, H., Park, J., Bennis, M., & Ko, Y.-C. (2022). Learning emergent random access protocol for LEO satellite networks. IEEE Transactions on Wireless Communications, 22(1), 257–269.
Lee, J.-I., Hsu, Y.-H., & Sun, S.-S. (2024). A DRL-based NOMA power allocation scheme for LEO satellite networks. In 2024 IEEE 100th Vehicular Technology Conference (VTC2024-Fall), 1–5. IEEE.
Liang, Y., Li, X., Zhang, J., & Ding, Z. (2017). Non-orthogonal random access for 5G networks. IEEE Transactions on Wireless Communications, 16(7), 4817–4831.
Lin, X., & Lee, N. (2021). 5G and Beyond: Fundamentals and Standards. Springer Cham, 1st edition.
Majamaa, M., Martikainen, H., Puttonen, J., & Hämäläinen, T. (2023). Satellite-assisted multi-connectivity in beyond 5G. In 2023 IEEE 24th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), 413–418. IEEE.
Mao, Y., Clerckx, B., & Li, V. O. (2018). Rate-splitting multiple access for downlink communication systems: Bridging, generalizing, and outperforming SDMA and NOMA. EURASIP Journal on Wireless Communications and Networking, (133).
Mao, Y., Dizdar, O., Clerckx, B., Schober, R., Popovski, P., & Poor, H. V. (2022). Rate-splitting multiple access: Fundamentals, survey, and future research trends. IEEE Communications Surveys Tutorials, 24(4), 2073–2126.
Nikopour, H., & Baligh, H. (2013). Sparse code multiple access. In 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), 332–336.
Saarnisaari, H., Laiyemo, A. O., & de Lima, C. H. M. (2019). Random access process analysis of 5G new radio based satellite links. In 2019 IEEE 2nd 5G World Forum (5GWF), 654–658.
Shaat, M., & Caus, M. (2024). Efficient radio resource management for rate maximization in LEO multi-satellite systems. In 2024 3rd International Conference on 6G Networking (6GNet), 102–106. IEEE.
Wang, Q., Chen, S., Yang, C., Qi, W., Zong, J., Xia, X., & Wang, D. (2024). Energy-efficient task split and resource allocation in LEO satellites assisted IoT network. IEEE Internet of Things Journal.
Ye, N., Yu, J., Wang, A., & Zhang, R. (2022). Help from space: Grant-free massive access for satellite-based IoT in the 6G era. Digital Communications and Networks, 8(2), 215–224.
Zhen, L., Bashir, A. K., Yu, K., Al-Otaibi, Y. D., Foh, C. H., & Xiao, P. (2020). Energy-efficient random access for LEO satellite-assisted 6G internet of remote things. IEEE Internet of Things Journal, 8(7), 5114–5128.
Publicado
19/05/2025
Como Citar
MOSCA, Eduardo; P. C. DE ANDRADE, Tiago; PEREIRA, Rafael; BARATA, Arthur; A. ASTUDILLO, Carlos.
Procedimento de Acesso Aleatório em Redes 5G/6G Integradas com Satélites de Órbita Terrestre Baixa. In: WORKSHOP DE REDES 6G (W6G), 5. , 2025, Natal/RN.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2025
.
p. 33-40.
DOI: https://doi.org/10.5753/w6g.2025.9524.
