Análise de Características Estruturais de Tokens não Fungíveis no Ethereum
Abstract
Non-fungible token or NFT is a digital object that cannot be replaced by any other object, whether of the same type or value, with features that prove its ownership to a person or organization via blockchain networks. The arts and digital media industry have gradually adopted NFTs due to their security for defining authorship, transfer, and royalties of these tokens, among others, that can be programmed in smart contracts. As NFT is a new technology with increasing popularity, there are opportunities for the development of tools that assist users in consuming this type of object. In this work, we conducted an analysis and characterization of NFT collections based on data extracted from OpenSea, which is the largest NFT trading platform currently. We used an unsupervised classification approach to learn about the structural properties of these collections. It allowed us to define four classes of NFT collections that can be easily understood by users to facilitate the trade and valuation of their tokens.
References
Aspembitova, A. T., Feng, L., and Chew, L. Y. (2021). Behavioral structure of users in cryptocurrency market. PLOS ONE, 16(1):1–19.
Bussab, W. d. O. and Morettin, P. A. (2017). Estatística Básica. Saraiva.
Casale-Brunet, S., Ribeca, P., Doyle, P., and Mattavelli, M. (2021). Networks of ethereum non-fungible tokens: A graph-based analysis of the erc-721 ecosystem. https://arxiv.org/abs/2110.12545. arXiv.
Christie’s (2021). Beeple (b. 1981). https://onlineonly.christies.com/s/first-open-beeple/beeple-b-1981-1/112924.
Hu, T., Liu, X., Chen, T., Zhang, X., Huang, X., Niu, W., Lu, J., Zhou, K., and Liu, Y. (2021). Transaction-based classification and detection approach for ethereum smart contract. Information Processing Management, 58(2):102462.
Norvill, R., Fiz Pontiveros, B. B., State, R., Awan, I., and Cullen, A. (2017). Automated labeling of unknown contracts in ethereum. In 2017 26th International Conference on Computer Communication and Networks (ICCCN), pages 1–6.
Okonkwo, I. E. (2021). Nft, copyright; and intellectual property commercialisation. SSRN. https://ssrn.com/abstract=3856154.
Oliveira, V. C., Almeida Valadares, J., A. Sousa, J. E., Borges Vieira, A., Bernardino, H. S., Moraes Villela, S., and Dias Goncalves, G. (2021). Analyzing transaction confirmation in ethereum using machine learning techniques. SIGMETRICS Perform. Eval. Rev., 48(4):12–15.
Rebello, G., Hu, Y., Thilakarathna, K., Batista, G., Seneviratne, A., and Duarte, O. C. (2020). Melhorando a acurácia da detecção de lavagem de dinheiro na rede bitcoin. In Anais do XXXVIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 728–741, Porto Alegre, RS, Brasil. SBC.
Revoredo, T. (2021). Nfts e sua sofisticação nos blockchains. [link].
Singh, H. J. and Hafid, A. S. (2019). Transaction confirmation time prediction in ethereum blockchain using machine learning. https://arxiv.org/abs/1911.11592. arXiv.
Valadares, J., Oliveira, V., Sousa, J., Bernardino, H., Villela, S., Vieira, A., and Gonçalves, G. (2021). Identificação de perfis de comportamento de usuários no ethereum utilizando técnicas de aprendizado de máquina. In Anais do IV Workshop em Blockchain: Teoria, Tecnologias e Aplicações, pages 60–73, Porto Alegre, RS, Brasil. SBC.
Wang, M., Ichijo, H., and Xiao, B. (2020). Cryptocurrency address clustering and labeling. https://arxiv.org/abs/2003.13399. arXiv.
Wu, S. X., Wu, Z., Chen, S., Li, G., and Zhang, S. (2021). Community detection in blockchain social networks. J. Commun. Inf. Networks, 6:59–71.
Xu, G., Guo, B., Su, C., Zheng, X., Liang, K., Wong, D. S., and Wang, H. (2020). Am i eclipsed? a smart detector of eclipse attacks for ethereum. Computers Security, 88:101604.
