Análise de Características Estruturais de Tokens não Fungíveis no Ethereum

  • Samuel de Oliveira Ribeiro UFPI
  • Dayan Ramos Gomes UFPI
  • Emanuel Coutinho UFC
  • Glauber Dias Gonçalves UFPI

Abstract


Non-fungible token or NFT is a digital object that cannot be replaced by any other object, whether of the same type or value, with features that prove its ownership to a person or organization via blockchain networks. The arts and digital media industry have gradually adopted NFTs due to their security for defining authorship, transfer, and royalties of these tokens, among others, that can be programmed in smart contracts. As NFT is a new technology with increasing popularity, there are opportunities for the development of tools that assist users in consuming this type of object. In this work, we conducted an analysis and characterization of NFT collections based on data extracted from OpenSea, which is the largest NFT trading platform currently. We used an unsupervised classification approach to learn about the structural properties of these collections. It allowed us to define four classes of NFT collections that can be easily understood by users to facilitate the trade and valuation of their tokens.

References

Ahmad, T. and Mohammed, H. (2019). K-means clustering algorithm: Applications in data science and bioinformatics. Big Data Analytics and Computational Intelligence, 1(1):1–13.

Aspembitova, A. T., Feng, L., and Chew, L. Y. (2021). Behavioral structure of users in cryptocurrency market. PLOS ONE, 16(1):1–19.

Bussab, W. d. O. and Morettin, P. A. (2017). Estatística Básica. Saraiva.

Casale-Brunet, S., Ribeca, P., Doyle, P., and Mattavelli, M. (2021). Networks of ethereum non-fungible tokens: A graph-based analysis of the erc-721 ecosystem. https://arxiv.org/abs/2110.12545. arXiv.

Christie’s (2021). Beeple (b. 1981). https://onlineonly.christies.com/s/first-open-beeple/beeple-b-1981-1/112924.

Hu, T., Liu, X., Chen, T., Zhang, X., Huang, X., Niu, W., Lu, J., Zhou, K., and Liu, Y. (2021). Transaction-based classification and detection approach for ethereum smart contract. Information Processing Management, 58(2):102462.

Norvill, R., Fiz Pontiveros, B. B., State, R., Awan, I., and Cullen, A. (2017). Automated labeling of unknown contracts in ethereum. In 2017 26th International Conference on Computer Communication and Networks (ICCCN), pages 1–6.

Okonkwo, I. E. (2021). Nft, copyright; and intellectual property commercialisation. SSRN. https://ssrn.com/abstract=3856154.

Oliveira, V. C., Almeida Valadares, J., A. Sousa, J. E., Borges Vieira, A., Bernardino, H. S., Moraes Villela, S., and Dias Goncalves, G. (2021). Analyzing transaction confirmation in ethereum using machine learning techniques. SIGMETRICS Perform. Eval. Rev., 48(4):12–15.

Rebello, G., Hu, Y., Thilakarathna, K., Batista, G., Seneviratne, A., and Duarte, O. C. (2020). Melhorando a acurácia da detecção de lavagem de dinheiro na rede bitcoin. In Anais do XXXVIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 728–741, Porto Alegre, RS, Brasil. SBC.

Revoredo, T. (2021). Nfts e sua sofisticação nos blockchains. [link].

Singh, H. J. and Hafid, A. S. (2019). Transaction confirmation time prediction in ethereum blockchain using machine learning. https://arxiv.org/abs/1911.11592. arXiv.

Valadares, J., Oliveira, V., Sousa, J., Bernardino, H., Villela, S., Vieira, A., and Gonçalves, G. (2021). Identificação de perfis de comportamento de usuários no ethereum utilizando técnicas de aprendizado de máquina. In Anais do IV Workshop em Blockchain: Teoria, Tecnologias e Aplicações, pages 60–73, Porto Alegre, RS, Brasil. SBC.

Wang, M., Ichijo, H., and Xiao, B. (2020). Cryptocurrency address clustering and labeling. https://arxiv.org/abs/2003.13399. arXiv.

Wu, S. X., Wu, Z., Chen, S., Li, G., and Zhang, S. (2021). Community detection in blockchain social networks. J. Commun. Inf. Networks, 6:59–71.

Xu, G., Guo, B., Su, C., Zheng, X., Liang, K., Wong, D. S., and Wang, H. (2020). Am i eclipsed? a smart detector of eclipse attacks for ethereum. Computers Security, 88:101604.
Published
2023-05-22
RIBEIRO, Samuel de Oliveira; GOMES, Dayan Ramos; COUTINHO, Emanuel; GONÇALVES, Glauber Dias. Análise de Características Estruturais de Tokens não Fungíveis no Ethereum. In: BLOCKCHAIN WORKSHOP: THEORY, TECHNOLOGY AND APPLICATIONS (WBLOCKCHAIN), 6. , 2023, Brasília/DF. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2023 . p. 1-14. DOI: https://doi.org/10.5753/wblockchain.2023.735.