Proposta de Gestão do Ciclo de Vida de Equipamentos de TI com Appendable-block Blockchain
Abstract
Blockchain technology has been successfully applied to various fields that require secure and decentralized storage of information. One such area is product lifecycle management, which traditionally relies on centralized storage. However, using conventional blockchains in this context presents certain challenges, mainly related to performance and latency issues. To address these concerns, new chain topologies have been developed that aim to improve these properties by changing the structure of the chain. One such innovation is the appendable-block blockchain, which separates the insertion of transactions from the block insertion process, allowing new data to be added to an auxiliary chain from the main block. This paper seeks to expand on the studies of this new model by exploring possible contributions and improvements in its storage, persistence, and efficient data access. The paper will also investigate the process of retrieving information from the same context using a case study involving a patent that addresses the storage and retrieval of device lifecycle data.
References
Berdik, D., Otoum, S., Schmidt, N., Porter, D., and Jararweh, Y. (2021). A survey on blockchain for information systems management and security. Information Processing & Management, 58(1):102397.
Brown, C., DeHayes, D., Perkins, W., and Martin, W. (2012). Managing Information Technology. Pearson Prentice Hall.
Bryan, V. (2010). Chapter 14: Information technology management compendium. M. Moiseichik(Ed.), Management of Park and Recreation Agencies, 3rd Edition, 14:305–347.
Chen, S., Cai, X., Wang, X., Liu, A., Lu, Q., Xu, X., and Tao, F. (2021). Blockchain applications in plm towards smart manufacturing. The International Journal of Advanced Manufacturing Technology, 118:1–15.
da Conceição, A. F., da Silva, F. S. C., Rocha, V., Locoro, A., and Barguil, J. M. M. (2018). Eletronic health records using blockchain technology. In Anais do I Workshop em Blockchain: Teoria, Tecnologias e Aplicações, Porto Alegre, RS, Brasil. SBC.
dos Santos, R. L., Wickboldt, J. A., Lunardi, R. C., Dalmazo, B. L., Granville, L. Z., Gaspary, L. P., Bartolini, C., and Hickey, M. (2011). A solution for identifying the root cause of problems in it change management. In 12th IFIP/IEEE International Symposium on Integrated Network Management (IM 2011) and Workshops, pages 586–593.
Gërvalla, M., Preniqi, N., and Kopacek, P. (2018). It infrastructure library (itil) framework approach to it governance. International Federation of Automatic Control PapersOnLine, 51:181–185.
Hjalmarsson, F., Hreiarsson, G. K., Hamdaqa, M., and Hjálmtýsson, G. (2018). Blockchain-based e-voting system. In 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pages 983–986.
Hoske, M. T. (2018). New model optimizes machine metrics. Control Engineering, 65(11):10–11.
Hruby, P. and Scheller, C. V. (2019). Device as a service–an economic model. In Value Modeling and Business Ontology (VMBO) workshop, Stockholm, Sweden.
Liu, X., Wang, W., Guo, H., Barenji, A. V., Li, Z., and Huang, G. Q. (2020). Industrial blockchain based framework for product lifecycle management in industry 4.0. Robotics and Computer-Integrated Manufacturing, 63:101897.
Lunardi, R. C., Alharby, M., Nunes, H. C., Zorzo, A. F., Dong, C., and Moorsel, A. v. (2020). Context-based consensus for appendable-block blockchains. In 2020 IEEE International Conference on Blockchain (Blockchain), pages 401–408.
Lunardi, R. C., Michelin, R. A., Neu, C. V., Nunes, H. C., Zorzo, A. F., and Kanhere, S. S. (2019). Impact of consensus on appendable-block blockchain for iot. In Proceedings of the 16th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, MobiQuitous ’19, page 228–237, New York, NY, USA. Association for Computing Machinery.
Lunardi, R. C., Michelin, R. A., Nunes, H. C., Neu, C. V., Zorzo, A. F., and Kanhere, S. S. (2022). Consensus algorithms on appendable-block blockchains: Impact and security analysis. Mob. Netw. Appl., 27(4):1408–1420.
Michelin, R. A., Dorri, A., Steger, M., Lunardi, R. C., Kanhere, S. S., Jurdak, R., and Zorzo, A. F. (2018). Speedychain: A framework for decoupling data from blockchain for smart cities. In 15th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, MobiQuitous ’18, pages 145–154, New York, NY, USA. ACM.
Nunes, H. C., Lunardi, R. C., Zorzo, A. F., Michelin, R. A., and Kanhere, S. S. (2020). Context-based smart contracts for appendable-block blockchains. In 2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), pages 1–9.
Tran, V. H., Lenssens, B., Kassab, A., Laks, A., Rivière, E., Rosinosky, G., and Sadre, R. (2022). Machine-as-a-service: Blockchain-based management and maintenance of industrial appliances. Engineering Reports, page e12567.
Treleaven, P., Gendal Brown, R., and Yang, D. (2017). Blockchain technology in finance. Computer, 50(9):14–17.
Tschorsch, F. and Scheuermann, B. (2016). Bitcoin and beyond: A technical survey on decentralized digital currencies. IEEE Communications Surveys & Tutorials, 18(3):2084–2123.
Turkanović, M., Hölbl, M., Košič, K., Heričko, M., and Kamǐsalić, A. (2018). Eductx: A blockchain-based higher education credit platform. IEEE access, 6:5112–5127.
Wang, C. (1994). Techno Vision: The Executive’s Survival Guide to Understanding and Managing Information Technology. Management: MacGraw-Hill. McGrawHill.
Zorzo, A. F., Nunes, H. C., Lunardi, R. C., Michelin, R. A., and Kanhere, S. S. (2018). Dependable iot using blockchain-based technology. In Latin-American Symposium on Dependable Computing (LADC), pages 1–6.
Zotto, R. D. (2021). Lifecycle change cryptographic ledger. Publisher: Hewlett-Packard Development Company, L.P. (WO2021061146A1).
