Escalabilidade na Rede Ethereum: Vantagens e Desvantagens das Principais Técnicas Utilizadas

  • João Vitor Franco Lorenz UFF
  • Igor Machado Coelho UFF

Resumo


O presente artigo emprega a abordagem Kitchenham para realizar um mapeamento sistemático das técnicas de escalonamento presentes na blockchain Ethereum. O estudo focou em analisar as vantagens e desvantagens de sete das soluções mais populares, incluindo: sharding, state channel, sidechains, plasma, validium, rollup zk e otimista. Os resultados indicam que as técnicas mapeadas oferecem benefícios, como aumento da capacidade de transações e redução dos custos. No entanto, também apresentam limitações e riscos que afetam a segurança da rede.

Referências

AAVE (2023). Introduction to aave. Disponível em: [link], Acesso em: 22/03/2024.

Ajorlou, A. and Abbasfar, A. (2020). An optimized structure of state channel network to improve scalability of blockchain algorithms. In 2020 17th International ISC Conference on Information Security and Cryptology (ISCISC), pages 73–76.

Alemany, P., Vilalta, R., Munoz, R., Casellas, R., and Martinez, R. (2022). Evaluation of the abstraction of optical topology models in blockchain-based data center interconnection. Journal of Optical Communications and Networking, 14(4):211–221.

Besançon, L. et al. (2022). A blockchain ontology for dapps development. IEEE Access, 10:49905–49933.

Breslin, A. and Keel, T. (2023). Ethereum evolved: Dencun upgrade part 5, eip-4844. Disponível em: [link], Acesso em: 16/01/2024.

Böhme, R. et al. (2014). Bitcoin: Economics, technology, and governance. Economics of Innovation eJournal.

Dziembowski, S., Fabiański, G., Faust, S., and Riahi, S. (2020). Lower bounds for off-chain protocols: Exploring the limits of plasma. Cryptology ePrint Archive, Paper 2020/175.

Ethereum (2024). Máquina virtual do ethereum (evm). Disponível em: [link], Acesso em: 22/03/2024.

Gorzny, J., Po-An, L., and Derka, M. (2022). Ideal properties of rollup escape hatches. In Proceedings of the 3rd International Workshop on Distributed Infrastructure for the Common Good, DICG ’22, page 7–12, New York, NY, USA. Association for Computing Machinery.

Hafid, A., Hafid, A. S., and Samih, M. (2020). Scaling blockchains: A comprehensive survey. IEEE Access, 8:125244–125262.

Honari, K., Zhou, X., Rouhani, S., Dick, S., Liang, H., Li, Y., and Miller, J. (2022). A scalable blockchain-based smart contract model for decentralized voltage stability using sharding technique. In 2022 IEEE International Conference on Blockchain (Blockchain), pages 124–131.

Kemmoe, V. Y. et al. (2020). Recent advances in smart contracts: A technical overview and state of the art. IEEE Access, 8:117782–117801.

Kitchenham, B. A. (2004). Procedures for performing systematic reviews.

Lavaur, T., Detchart, J., Lacan, J., and Chanel, C. P. (2023). Modular zk-rollup on-demand. Journal of Network and Computer Applications, 217:103678.

Lavaur, T., Lacan, J., and Chanel, C. P. C. (2022). Enabling blockchain services for ioe with zk-rollups. Sensors, 22(17):6493.

Li, M., Tang, H., Hussein, A. R., and Wang, X. (2020). A sidechain-based decentralized authentication scheme via optimized two-way peg protocol for smart community. IEEE Open Journal of the Communications Society, 1:282–292.

Li, Y., Wang, J., and Zhang, H. (2023). A survey of state-of-the-art sharding blockchains: Models, components, and attack surfaces. Journal of Network and Computer Applications, 217:103686.

Liu, X., Xie, H., Yan, Z., and Liang, X. (2023). A survey on blockchain sharding. ISA Transactions, 141:30–43.

Mao, H., Nie, T., Sun, H., Shen, D., and Yu, G. (2023). A survey on cross-chain technology: Challenges, development, and prospect. IEEE Access, 11:45527–45546.

Nakamoto, S. (2008). A peer-to-peer electronic cash system. Disponível em: [link], Acesso em: 22/03/2024.

Negka, L. D. and Spathoulas, G. P. (2021). Blockchain state channels: A state of the art. IEEE Access, 9:160277–160298.

Neiheiser, R., Inácio, G., Rech, L., Montez, C., Matos, M., and Rodrigues, L. (2023). Practical limitations of ethereum’s layer-2. IEEE Access, 11:8651–8662.

Parashar, D., Sharma, M., Sharma, V., and Nand, P. (2022). Approaching solutions to blockchain security trilemma and consensus mechanisms. In 2022 4th International Conference on Advances in Computing, Communication Control and Networking (ICAC3N), pages 2030–2036.

Parsifal (2024). Perform systematic literature reviews. Disponível em: [link], Acesso em: 14/01/2024.

Polygon (2024). Polygon 2.0: Polygon pos to zk l2. Disponível em: [link], Acesso em: 10/01/2024.

Singh, A., Click, K., Parizi, R. M., Zhang, Q., Dehghantanha, A., and Choo, K.-K. R. (2020). Sidechain technologies in blockchain networks: An examination and state-of-the-art review. Journal of Network and Computer Applications, 149:102471.

Solidity (2023). Introdução aos smart contracts. Disponível em: [link], Acesso em: 22/03/2024.

Thibault, L. T., Sarry, T., and Hafid, A. S. (2022). Blockchain scaling using rollups: A comprehensive survey. IEEE Access, 10:93039–93054.

Treiblmaier, H. and Clohessy, T. (2020). Blockchain and Distributed Ledger Technology Use Cases: Applications and Lessons Learned. Springer.

Wood, G. (2014). Ethereum: A secure decentralised generalised transaction ledger. Ethereum Project Yellow Paper, 151:1–32.

Zhang, M., Li, J., Chen, Z., Chen, H., and Deng, X. (2023). An efficient and robust committee structure for sharding blockchain. IEEE Transactions on Cloud Computing, 11(3):2562–2574.
Publicado
24/05/2024
LORENZ, João Vitor Franco; COELHO, Igor Machado. Escalabilidade na Rede Ethereum: Vantagens e Desvantagens das Principais Técnicas Utilizadas. In: WORKSHOP EM BLOCKCHAIN: TEORIA, TECNOLOGIAS E APLICAÇÕES (WBLOCKCHAIN), 6. , 2024, Niterói/RJ. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024 . p. 29-40. DOI: https://doi.org/10.5753/wblockchain.2024.2370.