Agent-Based Model to simulate Araucaria angustifolia Forest Dynamics as a tool for Forest Management
Resumo
The objective of this project was developing an agent-based model to simulate the successional evolution of Araucaria angustifolia [Bertol.) Kuntze (Brazilian pine) in a natural forest stand providing useful information for forest management purpose. Using TerraME as computational framework, the colonization dynamic of Araucaria was represented as an agent with behavior modeled by its life cycle of recruitment, growth, dispersion and death. The model functioning was testing simulating scenarios with and without fires disturbances. Preliminary results are in accordance with conceptual models proposed for these forests. This work emphasizes the modelling relevance, constructing simulated scenarios that can be further integrated into decision making for natural resources management.
Referências
Backes, A. (2001). Determinação da idade e regeneração natural de ume população de Araucaria angustifolia (Bertol.) Kuntze em um povoamento florestal localizado no município de Caxias do Sul, RS, Brasil. Iheringia (Ser. Bot.) 56:115-130.
Botkin, D.B., Janak, J.F. and Wallis, J. R. (1972). Rationale, Limitations and Assumptions of a Northeastern Forest Growth Simulator. IBM Journal of Research and Development 16:101-116.
Bousquet, F. and Le Page, C. (2004). Multi-agent simulations and ecosystem management: a review. Ecological Modelling 176: 313–332
Bugmann, H. A. (1996). Simplified Forest Model to Study Species Composition along Climate Gradients. Ecology 77 (7): 2055–2074.
Bugmann, H. (2001). A review of forest gap models. Climate Change 51: 259-305.
Carneiro, T. G.S. , Andrade, P. R., Câmara. G., Monteiro, A. M. V. and Pereira, R. R. (2012). TerraME: an extensible toolbox for modeling nature-society interactions. Accepted in Enviromental Modelling and Software, 2013 (DOI: 10.1016/j.envsoft.2013.03.002).
Castle, C. and Crooks, A. (2006). Principles and Concepts of Agent-Based Modelling for Developing Geospatial Simulations, Working Paper 110 of the Centre for Advanced Spatial Analysis, Working Paper Series, University College London.
Chave, J. (1999). Study of structural, successional and spatial patterns in tropical rain forests using TROLL, a spatially explicit forest model. Ecological Modelling 124: 233–254.
Crooks, A., Castle, C., Batty,M. (2008). Key challenges in Agent-Based Modelling for Geo-Spatial Simulation. Computers, Environment and Urban Systems 32: 417-430. Bandel, G. and Gurgel, J. A. A. (1967). Proporção do sexo em Araucaria angustifolia. Silvicultura em São Paulo 6: 209-220.
Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., Goss-Custard, J., Grand, T., Heinz, S. K. and Huse, G. (2006). A standard protocol for describing individual-based and agent-based models. Ecological Modelling 198 (1-2): 115–126.
Hueck, K. (1972). As florestas da América do Sul: ecologia, composição e importância econômica. São Paulo: Polígono S.A. 466p.
IBGE. (1992). Manual técnico da vegetação brasileira. IBGE, Rio de Janeiro. 92p. (Série Manuais Técnicos de Geociências 1).
Iob, G. and Vieira, E.M. (2008). Seed predation of Araucaria angustifolia (Araucariaceae) in the Brazilian Araucaria Forest: influence of deposition site and comparative role of small and “large” mammals. Plant Ecology 198: 185-196.
Jarenkow, J.A. and Baptista, L.R.M. (1987). Composição florística e estrutura da mata com araucária na Estação Ecológica de Aracuri, Esmeralda, Rio Grande do Sul. Napaea 3: 9-18.
Klein, R.M. (1960). O aspecto dinâmico do pinheiro brasileiro. Sellowia 12:17- 44.
Köhler, P. and Huth, A. (1998). The effects of tree species grouping in tropical rainforest modeling: simulations with the individual-based model FORMIND. Ecological Modelling 109: 301-321.
Leemans, R. (1992). The Biological Component of the Simulation Model for Boreal Forest Dynamics. In: Shugart, H. H., Leemans, R., and Bonan, G. B. (eds.), A Systems Analysis of the Global Boreal Forest, Cambridge Univ. Press, Cambridge, p.428–445.
Lischke, H., Zimmermann, N.E., Bolliger, J., Rickebusch, S. and Löffler, T.J. (2006). TreeMig: A forest-landscape model for simulating spatio-temporal patterns from stand to landscape scale. Ecological Modelling 199: 409 - 420.
Longhi, S.J. (1980). A estrutura de uma floresta natural de Araucaria angustifolia (Bert.) O.Ktze. no sul do Brasil. Master Thesis in Forest Sciences, Universidade Federal do Paraná, Curitiba. 198p.
Ogden, J. (1985). An introduction to plant demography with special reference to New Zealand trees. New Zealand Journal of Botany 23: 751-772.
Ogden, J. and Stewart, G. H. (1995). Community dynamics of the New Zealand conifers. In: Enright, N. & Hill, R. S. (Eds). Ecology of the Southern Conifers. Smithsonian Institution Press, Washington. p. 81–119.
Oldeman, R.A.A. (1978). Architecture and energy exchange of dicotyledonous trees in the forest. In: Tomlinson, P.B. and Zimmerman, M.E. (Eds.), Tropical Trees as Living Systems. Cambridge University Press, New York.
Pacala, S. W., Canham, C. D. and Silander JR., J. A. (1993). Forest Models Defined by Field Measurements: I. The Design of a Northeastern Forest Simulator. Canadian Journal of Forest Research 23:1980–1988.
Ribeiro, M.C., Metzger, J.P., Martensen, A.C., Ponzoni, F. and Hirota, M. (2009). Brazilian Atlantic forest: how much is left and how is the remaining forest distributed? Implications for conservation. Biological Conservation 142: 1141–1153.
Sanqueta, C. R. and Mattei, E. (2006). Perspecticas de Recuperação e Manejo Sustentável das Florestas de Araucária. Multi-Graphic, Curitiba. 264p.
Shugart, H. H. and West, D. C. (1977). Development of an Appalachian Deciduous Forest Succession Model and its Application to Assessment of the Impact of the Chestnut Blight. Journal of Environmental Management 5:161–179.
Souza, A.F. (2007). Ecological interpretation of multiple population size structures in trees: The case of Araucaria angustifolia in South America. Austral Ecology 32: 524-533.
Valeriano, D. B. (2010). Dinâmica da Floresta Ombrófila Mista Altomontana, Campos do Jordão, São Paulo. Dissertation (Doctor in Sciences - Ecology) - Instituto de Biociências da Universidade de São Paulo, São Paulo, 2010.176 p.
Weishampel, J.F. and Urban, D.L. (1996). Coupling a spatially-explicit forest gap model with a 3-D solar routine to simulate latitudinal effects. Ecological Modelling 86:101-111.