CNN Aplicada à Imagens de drone para Identificação de Famílias de Planta Daninha em pastagem
Resumo
Novas tecnologias agrícolas como drone e Redes Neurais Convolucionais (CNN) podem favorecer os cultivos orgânico e convencional. Esse trabalho desenvolveu algoritmo baseado em CNN para identificar, em imagens de drone, plantas daninhas em pastagem, Panelas/PE. A Fabaceae teve os melhores resultados por suas características morfológicas e por sua espécie Crotalaria micans, tóxica ao gado. A CNN obteve 100% de acurácia, para 10 épocas de treinamento utilizando imagens da internet, do smartphone e de drone. Apesar do bom resultado da acurácia, observou-se a ocorrência de overfitting, causado pela baixa quantidade de imagens de drone e pela frequência de chuvas no Estado de Pernambuco, em 2022.
Referências
Amaral, L. R. do et al. Aplicações de UAVs na Agricultura 4.0. Revista Ciência Agronômica, v. 51, n. spe, 2020.
Bharambe, R. Docker: empowering app development for developers. Disponível em: [link]. Acesso em: 29 jun. 2021.
Da Rosa, M. C. (2019). Redes neurais convolutivas aplicadas à detecção de ervas daninhas. Universidade Federal do Rio Grande do Sul. Escola de Engenharia. Programa de Pós-Graduação em Engenharia Elétrica.
Dias Filho, M. B. Degradação das pastagens: o que é como evitar. Brasília, DF: Embrapa, 2017. 19 p.
Esposito, M. et al. Drone and sensor technology for sustainable weed management: A review. Chemical and Biological Technologies in Agriculture, v. 8, n. 1, p. 1-11, 2021.
Jati, A., Georgiou, P. Neural predictive coding using convolutional neural networks toward unsupervised learning of speaker characteristics. IEEE/ACM Trans. Audio, Speech, Lang. Process., v. 27, n. 10, p. 1577–1589, 2019.
Liang, W-C.; Yang, Y-J.; Chao, C-M. Low-cost weed identification system using drones. In: 2019 Seventh International Symposium on Computing and Networking Workshops (CANDARW). IEEE, 2019. p. 260-263.
OpenDroneMap Authors ODM – A command line toolkit to generate maps, point clouds, 3D models and DEMs from drone, balloon or kite images. OpenDroneMap/ODM GitHub Page 2020; [link]. Acessado em 04 set. 2022.
Petrich, L. et al. Detection of Colchicum autumnale in drone images, using a machine-learning approach. Precision Agriculture, v. 21, n. 6, p. 1291-1303, 2020.
Rist, Y., Shendryk, I., Diakogiannis, F., Levick, S. Weed Mapping Using Very High Resolution Satellite Imagery and Fully Convolutional Neural Network. IGARSS, IEEE International Geoscience and Remote Sensing Symposium, p. 9784-9787, 2019.
Teixeira, T., Jayme, S., Arnal, G., Sônia, B., João, T., Neto, C., Vieira, L., Kleber, K., & Sampaio De Souza, X. (n.d.). Visão computacional aplicada na agricultura. Alice.Cnptia.Embrapa.Br. Retrieved August 16, 2022, from [link].
Tian, Y. Artificial Intelligence Image Recognition Method Based on Convolutional Neural Network Algorithm. IEEE Access, v. 8, p. 125731-125744, 2020.
Yang, J., Wang, Y., Chen, Y., Yu, J. Detection of Weeds Growing in Alfalfa Using Convolutional Neural Networks. Agronomy. v. 12, n. 6, p. 1459, 2022.
Zhang, W., Hansen, M., Volonakis, T., Smith, M., Smith. Broad-Leaf Weed Detection in Pasture. IEEE 3rd International Conference on Image, Vision and Computing (ICIVC), p. 101-105, 2018.