Sistema de Monitoramento Automatizado por Meio de Dispositivo Embarcado de Baixo Custo.
Resumo
Com o crescente uso do conceito de IoT e das ferramentas que integram essa tecnologia, como as RSSF (Rede de Sensores Sem Fio), o custo agregado dos dispositivos que a disponibilizam tem caído gradativamente. Todavia, a integração dessa tecnologia no gerenciamento de sensores no campo ainda é um desafio de implementação. Este trabalho apresenta a construção de um modelo de arquitetura, responsável pela implementação de um sistema de monitoramento automatizado de dispositivos embarcados, bem como a construção de uma interface simples para o usuário final. A arquitetura é avaliada por meio da implementação de um sistema de monitoramento de qualidade de água.
Referências
Bandyopadhyay, S. et al. (2011). Role of middleware for internet of things: A study. International Journal of Computer Science & Engineering Survey (IJCSES).
Bestari, D. N. and Wibowo, A. (2023). An iot-based real-time weather monitoring system using telegram bot and thingsboard platform. International Journal of Interactive Mobile Technologies, 17(6).
Bourechak, A. et al. (2023). At the confluence of artificial intelligence and edge computing in iot-based applications: A review and new perspectives. Sensors, 23(3):1639.
Chhipi-Shrestha, G. et al. (2023). Digital water: artificial intelligence and soft computing applications for drinking water quality assessment. Clean Technologies and Environmental Policy, pages 1–30.
Han, L. C. and Noor, I. (2023). Automatic aquarium water change system with real-time monitoring through iot. Journal of Applied Technology and Innovation, 7(2):11.
Jáquez, A. et al. (2023). Extension of lora coverage and integration of an unsupervised anomaly detection algorithm in an iot water quality monitoring system. Water, 15(7):1351.
Litjens, O. J. (2009). Automação de estufas agrícolas utilizando sensoriamento remoto e o protocolo zigbee.
Malik, A. and Kushwah, R. (2023). Energy-efficient scheduling in iot using wi-fi and zigbee cross-technology. The Journal of Supercomputing, pages 1–30.
Mell, P. and Grance, T. (2011). The nist definition of cloud computing.
Misra, G. (2023). Iot based river water quality monitoring. Computational Algorithms and Numerical Dimensions.
Othman, M. F. and Shazali, K. (2012). Wireless sensor network applications: A study in environment monitoring system. In International Symposium on Robotics and Intelligent Sensors 2012, pages 1204–1210, Amsterdã.
Pasika, S. and Gandla, S. T. (2020). Smart water quality monitoring system with cost-effective using iot. Heliyon, 6(7):e04096.
Patil, P. V. (2015). Fog computing. International Journal of Computer Applications.
Pires, P. et al. (2017). Plataformas para a internet das coisas.
Promput, S. et al. (2023). Design and analysis performance of iot-based water quality monitoring system using lora technology. Network, 3:16.
Rao, A. S. et al. (2013). Design of low-cost autonomous water quality monitoring system. In 2013 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pages 14–19. IEEE.
Rastegari, H. et al. (2023). Internet of things in aquaculture: A review of the challenges and potential solutions based on current and future trends. Smart Agricultural Technology.
Rozario, A. R. et al. (2022). Review of water quality monitoring using internet of things (iot). International Journal of Research and Analytical Reviews.
Ruiz-Garcia, L. et al. (2009). A review of wireless sensor technologies and applications in agriculture and food industry: State of the art and current trends.
Santos, B. et al. (2017). Internet das coisas: da teoria à prática.
Terracher, A. et al. (2023). Model-driven engineering to ensure interoperability in iot data exploitation. Available at SSRN.
Yusri, W. M. E. W. M. et al. (2023). Iot-based water quality monitoring system and test for swimming pool water physicochemical quality. In AIP Conference Proceedings, volume 2609. AIP Publishing LLC.