Simulation of Pollutant Dispersion in the Atmosphere under Unstable Conditions Using an Analytical Solution

  • Regis S. de Quadros UFPel
  • Glênio A. Gonçalves UFPel
  • Daniela Buske UFPel
  • Juliana Contreira UFPel
  • Renata A. Cezimbra UFPel

Resumo


Analytical solutions of equations are of fundamental importance in understanding and describing physical phenomena. In this work we present the solution of the two-dimensional advection-diffusion equation in Cartesian geometry by the GILTT approach, considering that the eddy diffusivity and the vertical wind profile depends on the z variable. To carry more information of the original problem, a Sturm-Liouville problem given by Bessel functions is used as basis in the solution. Numerical simulations and comparisons with experimental data are presented.

Referências

Barad, M.L, 1958. Project Prairie Grass. Geophysical Research Paper, No. 59, Vols. I and II, GRD, Bedford, MA.

Blackadar, A.K., 1997. Turbulence and diffusion in the atmosphere: lectures in Environmental Sciences, Springer-Verlag, 185pp.

Buske, D., Vilhena, M.T., Segatto, C.F., Quadros, R.S., 2011. A General Analytical Solution of the Advection-Diffusion Equation for Fickian Closure. In: Integral Methods in Science and Engineering: Computational and Analytic Aspects. Boston: Birkhäuser, pp. 25-34.

Buske, D., Vilhena, M.T., Tirabassi, T., Bodmann, B., 2012. Air pollution steady-state advection diffusion equation: the general three-dimensional solution. JEP 3, 1124-1134.

Costa, C.P., Vilhena, M.T., Moreira, D.M. and Tirabassi, T., 2006. Semi-analytical solution of the steady three-dimensional advection-diffusion equation in the planetary boundary layer. Atmos. Environ. 40 (29), 5659-5669.

Degrazia, G.A., Campos Velho, H.F. and Carvalho, J.C., 1997. Nonlocal exchange coefficients for the convective boundary layer derived from spectral properties. Contr. Atmos. Phys., 57-64.

Demuth, C., 1978. A contribution to the analytical steady solution of the diffusion equation for line sources. Atmos. Environ. 12, 1255-1258.

Gryning, S.E., Lyck, E. 1984. Atmospheric dispersion from elevated source in an urban area: comparison between tracer experiments and model calculations. J. Appl. Meteor. 23, 651-654.

Hanna, S.R., 1989. Confidence limit for air quality models as estimated by bootstrap and jacknife resampling methods. Atmos. Environ. 23, 1385-1395.

Irwin, J.S., 1979. A theoretical variation of the wind profile power-low exponent as a function of surface roughness and stability, Atm. Environ. 13, 191-194.

Kumar, P., Sharan, M., 2010. An analytical model for dispersion of pollutants from a continuous source in the atmospheric boundary layer. Proc. Royal Society A: Mathematical, Physical and Engineering Sciences 466, 383-406.

Lin, J.S., Hildemann, L.M., 1997. A generalised mathematical scheme to analytically solve the atmospheric diffusion equation with dry deposition. Atmos. Environ. 31, 59-71.

Moreira, D.M, Vilhena, M.T., Tirabassi, T., Costa, C. and Bodmann, B., 2006. Simulation of pollutant dispersion in atmosphere by the Laplace transform: the ADMM approach. Water, Air and Soil Pollution 177, 411-439.

Moreira, D.M., Vilhena, M.T., Buske, D. and Tirabassi, T.,2009 . The state-of-art of the GILTT method to simulate pollutant dispersion in the atmosphere. Atmos. Research 92, 1-17.

Nieuwstadt, F.T.M., 1980. An analytical solution of the time-dependent, one-dimensional diffusion equation in the atmospheric boundary layer. Atmos. Environ. 14, 1361-1364.

Nieuwstadt, F.T.M., de Haan, B.J., 1981. An analytical solution of one-dimensional diffusion equation in a non.stationary boundary layer with an application to inversion rise fumigation. Atmos. Environ. 15, 845-851.

Panofsky, H.A., Dutton, J.A., 1984. Atmospheric Turbulence. John Wiley & Sons, New York.

Perez Guerrero, J.S., Pimentel, L.C.G., Oliveira Junior, J.F., Heilbron Filho, P.F.L., Ulke, A.G., 2012. A unified analytical solution of the steady-state atmospheric diffusion equation. Atmos. Environ. 55, 201-212.

Rounds W., 1955. Solutions of the two-dimensional diffusion equation. Trans. Am. Geophys. Union 36, 395-405.

Scriven R.A., Fisher B.A., 1975. The long range transport of airborne material and its removal by deposition and washout-II. The effect of turbulent diffusion. Atmos. Environ. 9, 59-69.

Seinfeld, J.H., Pandis, S.N., 1998. Atmospheric chemistry and physics. John Wiley & Sons, New York, pp.1326.

Sharan, M., Singh, M.P., Yadav, A.K., 1996. A mathematical model for the atmospheric dispersion in low winds with eddy diffusivities as linear function of downwind distance. Atmos. Environ. 30, 1137-1145.

Sharan, M., Modani, M., 2005. An analytical study for the dispersion of pollutants in a finite layer under low wind conditions. Pure and Applied Geophysics 162, 1861-1892.

Sharan, M., Modani, M., 2006. A two-dimensional analytical model for the dispersion of air-pollutants in the atmosphere with a capping inversion. Atmos. Environ. 40, 3469-3489.

Smith, F.B., 1957. The diffusion of smoke from a continuous elevated poinr source into a turbulent atmosphere. J. Fluid Mech. 2, 49-76.

Tagliazucca, M., Nanni, T., Tirabassi, T., 1985. An analytical dispersion model for sources in the surface layer. Nuovo Cimento 8C, 771-781.

Tirabassi, T., 1989. Analytical air pollution and diffusion models. Water, Air and Soil Pollution 47, 19-24.

Tirabassi, T., Rizza, U. 1994. Applied dispersion modelling for ground-level concentrations from elevated sources. Atmos. Environ. 28, 611-615.

van Ulden, A.P., 1978. Simple estimates for vertical diffusion from sources near the ground. Atmos. Environ. 12, 2125-2129.

Vilhena, M.T., Buske, D., Degrazia, G.A., Quadros, R.S., 2012. An analytical model with temporal variable eddy diffusivity applied to contaminant dispersion in the atmospheric boundary layer. Physica. A 391, 2576-2584.
Publicado
23/07/2013
QUADROS, Regis S. de; GONÇALVES, Glênio A.; BUSKE, Daniela; CONTREIRA, Juliana; CEZIMBRA, Renata A.. Simulation of Pollutant Dispersion in the Atmosphere under Unstable Conditions Using an Analytical Solution. In: WORKSHOP DE COMPUTAÇÃO APLICADA À GESTÃO DO MEIO AMBIENTE E RECURSOS NATURAIS (WCAMA), 4. , 2013, Maceió/AL. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2013 . p. 1083-1090. ISSN 2595-6124.