Reconhecimento de Padrões de Colônias de Abelhas Apis Mellifera Segundo Mudanças das Estações do Ano

  • Felipe Anderson O. Maciel
  • Antonio Rafael Braga
  • Alisson de Lima e Silva
  • Ticiana L. Coelho da Silva
  • Breno M. Freitas
  • Danielo G. Gomes

Resumo


Na qualidade de principal agente polinizador, as abelhas são essenciais à produção de alimentos para o ser humano e para manutenção dos ecossistemas. Entre as culturas agrícolas utilizadas para o consumo humano, 75% dependem de polinização. Alinhando-se a uma preocupação atual com a sobrevivência das abelhas, este artigo visa descobrir estados de colônias de Apis mellifera a fim de auxiliar o apicultor no manejo e na manutenção de suas colmeias. Nossa metodologia consistiu na aplicação de uma técnica de clusterização em dois datasets reais de colmeias com dados de temperatura, umidade e massa. A partir da aplicação do índice Calinski-Harabasz e do algoritmo K-means, identificamos padrões coerentes e associados às transições entre as estações do ano. Além disso, concluímos que a colônia mais forte é mais eficiente ao tentar manter o microclima da colmeia durante o inverno.

Referências

Aizen, M. A. and Harder, L. D. (2009). The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Current Biology, 19(11):915 – 918.

Becher, M. A. (2010). The influence of developmental temperatures on division of labour in honeybee colonies. PhD thesis, Halle (Saale), Martin-Luther-Universität Halle-Wittenberg, Diss., 2010.

Calinski, T. and Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in Statistics, 3(1):1–27.

Cook, C. N. and Breed, M. D. (2013). Social context influences the initiation and threshold of thermoregulatory behaviour in honeybees. Animal behaviour, 86(2):323–329.

Kridi, D. S., Carvalho, C. G. N. d., and Gomes, D. G. (2014). A predictive algorithm for mitigate swarming bees through proactive monitoring via wireless sensor networks. In Proceedings of the 11th ACM symposium on Performance evaluation of wireless ad hoc, sensor, & ubiquitous networks, pages 41–47. ACM.

Kridi, D. S., de Carvalho, C. G. N., and Gomes, D. G. (2016). Application of wireless sensor networks for beehive monitoring and in-hive thermal patterns detection. Computers and Electronics in Agriculture, 127:221–235.

Kviesis, A. and Zacepins, A. (2016). Application of neural networks for honey bee colony state identification. In Carpathian Control Conference (ICCC), 2016 17th International, pages 413–417. IEEE.

Kviesis, A., Zacepins, A., Durgun, M., and Tekin, S. (2015). Application of wireless sensor networks in precision apiculture. Engineering for Rural Development, pages 440–445.

MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, volume 1, pages 281–297. Oakland, CA, USA.

Meikle, W. G. and Holst, N. (2015). Application of continuous monitoring of honeybee colonies. Apidologie, 46(1):10–22.

Murphy, F. E., Magno, M., Whelan, P. M., O’Halloran, J., and Popovici, E. M. (2016). b+ wsn: Smart beehive with preliminary decision tree analysis for agriculture and honey bee health monitoring. Computers and Electronics in Agriculture, 124:211–219.

Ollerton, J., Winfree, R., and Tarrant, S. (2011). How many flowering plants are pollinated by animals? Oikos, 120(3):321–326.

Ostwald, M. M., Smith, M. L., and Seeley, T. D. (2016). The behavioral regulation of thirst, water collection and water storage in honey bee colonies. Journal of Experimental Biology, 219(14):2156–2165.

Potts, S. G., Imperatriz-Fonseca, V. L., Ngo, H. T., Biesmeijer, J. C., Breeze, T. D., Dicks, L. V., Garibaldi, L. A., Hill, R., Settele, J., and Vanbergen, A. J. (2016). Summary for policymakers of the assessment report of the intergovernmental science-policy platform on biodiversity and ecosystem services on pollinators, pollination and food production. Report, Bonn, Germany.

Ruan, Z.-Y., Wang, C.-H., Lin, H.-J., Huang, C.-P., Chen, Y.-H., Yang, E.-C., Tseng, C.-L., and Jiang, J.-A. (2017). An internet of things-based weight monitoring system for honey. World Academy of Science, Engineering and Technology, International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering, 11(6):478–482.

Sánchez, V., Gil, S., Flores, J. M., Quiles, F. J., Ortiz, M. A., and Luna, J. J. (2015). Implementation of an electronic system to monitor the thermoregulatory capacity of honeybee colonies in hives with open-screened bottom boards. Computers and Electronics in Agriculture, 119:209–216.

Tukey, J. W. (1977). Exploratory Data Analysis. Addison-Wesley Publishing Company.

Zacepins, A., Brusbardis, V., Meitalovs, J., and Stalidzans, E. (2015). Challenges in the development of precision beekeeping. Biosystems Engineering, 130:60–71.

Zacepins, A. and Karasha, T. (2012). Web based system for the bee colony remote monitoring. In Application of Information and Communication Technologies (AICT), 2012 6th International Conference on, pages 1–4. IEEE.

Zacepins, A., Kviesis, A., Pecka, A., and Osadcuks, V. (2017). Development of internet of things concept for precision beekeeping. In Carpathian Control Conference (ICCC), 2017 18th International, pages 23–27. IEEE.
Publicado
26/06/2018
MACIEL, Felipe Anderson O.; BRAGA, Antonio Rafael; SILVA, Alisson de Lima e; SILVA, Ticiana L. Coelho da; FREITAS, Breno M.; GOMES, Danielo G.. Reconhecimento de Padrões de Colônias de Abelhas Apis Mellifera Segundo Mudanças das Estações do Ano. In: WORKSHOP DE COMPUTAÇÃO APLICADA À GESTÃO DO MEIO AMBIENTE E RECURSOS NATURAIS (WCAMA), 9. , 2018, Natal. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2018 . ISSN 2595-6124. DOI: https://doi.org/10.5753/wcama.2018.2937.