IoT for Landslide Risk Assessment

  • Thales L. de Souza ITA
  • Andreia A. Costa ITA
  • Juan Faria ITA
  • Felix D. Antreich ITA
  • Johnny C. Marques ITA
  • Cecilia de A. C. César ITA

Abstract


Climate change has caused several incidents worldwide, such as excessive rainfall that causes landslides with consequences ranging from the loss of property to the loss of human life. The effects of these events could be minimized if people and groups were alerted on time and knew the procedures to follow. In Brazil, initiatives using cutting-edge technology are still incipient, as indicated by CEMADEN (National Center for Natural Disaster Monitoring and Alerts). This article is dedicated to modeling an environmental cyber-physical system that provides for installing sensors in risk areas, collects and processes data, and sends notifications to the responsible authorities. Additionally, it integrates data, allowing long-term analysis aimed at planning strategies by public authorities. A prototype of the environmental system was built, and preliminary tests indicated that the project has functionality and performance adequate to the demands of this application.

References

Bassi, A., Bauer, M., Fiedler, M., Kramp, T., Kranenburg, R., Lange, S., and Meissner, S. (2013). Enabling Things to Talk.

Danladi, M. and Baykara, M. (2022). Low power wide area network technologies: Open problems, challenges, and potential applications. Acesso em: 20 abr. 2023.

Debauche, O., Mahmoudi, S., and Guttadauria, A. (2022). A new edge computing architecture for iot and multimedia data management. Information, 13(2):89. Acesso em: 20 abr. 2023.

Esposito, M., Palma, L., Belli, A., Sabbatini, L., and Pierleoni, P. (2022). Recent advances in internet of things solutions for early warning systems: A review. Sensors, 22(6):2124. Acesso em: 20 abr. 2023.

FUSINATO, E., RUHOFF, A., and PAIVA, R. (2023). Revisão sistemática de estimativas de precipitação quantitativa por sensoriamento remoto para eventos de desastres hidrológicos passados. III Encontro Nacional de Desastres.

Hemalatha, T. H., Uhlemann, S., Reghunadh, R., Ramesh, M., and Rangan, V. (2022). Review of landslide monitoring techniques with iot integration opportunities. IEEE Xplore. Acesso em: 20 abr. 2023.

Junior, I. F. F., Filho, G. B., and Celaschi, S. (2016). Monitoramento de deslizamento de terra usando sensor simples de fibra Óptica.

Lau, Y. M., Wang, K. L., Wang, Y. H., Yiu, W. H., Ooi, G. H., Tan, P. S., Wu, J., Leung, M. L., Lui, H. L., and Chen, C. W. (2023). Monitoring of rainfall-induced landslides at songmao and lushan, taiwan, using iot and big data-based monitoring system. Landslides, 20.

Maureira, M. A. G. (2014). Thingspeak – an api and web service for the internet of things.

Meireles, L. V. (2018). Projeto de uma rede de internet das coisas para monitoramento e alerta de emergência em áreas de risco. Dissertação (Mestrado em Instrumentação, Controle e Automação de Processos de Mineração)UFOP.

Microsoft (2024). O que é o serviço do power bi? Mohan, A., Dwivedi, R., and Kumar, B. (2023). IoT for Landslides: Applications, Technologies and Challenges, pages 245–259. Springer Nature Singapore, Singapore.

SBC (2022). Tecnologias digitais para o meio ambiente: Manifesto sbc.

Souza, J., Pinho, A., Ferreira, C., Monteiro, A., and Henriques, F. (2022). An iot based system for landslides warnings using a real time slope monitoring model. Acesso em: 20 abr. 2023.

Suwarno, I., Ma’arif, A., Raharja, N., Nurjanah, A., Ikhsan, J., and Mutiarin, D. (2021). Iot-based lava flood early warning system with rainfall intensity monitoring and disaster communication technology. Acesso em: 20 abr. 2023.
Published
2024-07-21
SOUZA, Thales L. de; COSTA, Andreia A.; FARIA, Juan; ANTREICH, Felix D.; MARQUES, Johnny C.; CÉSAR, Cecilia de A. C.. IoT for Landslide Risk Assessment. In: WORKSHOP ON COMPUTING APPLIED TO THE MANAGEMENT OF THE ENVIRONMENT AND NATURAL RESOURCES (WCAMA), 15. , 2024, Brasília/DF. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024 . p. 41-50. ISSN 2595-6124. DOI: https://doi.org/10.5753/wcama.2024.2110.