Detection of the Pest Spodoptera frugiperda in Corn Cultivation Using Smart Traps and Computer Vision

  • Wendell dos S. Silva UFC
  • Bianca Soares UFC
  • Valentine de L. Almeida UFC
  • Leonardo Viana UFC
  • Patrik L. Pastori UFGD
  • Deborah M. V. Magalhães Unilab
  • Atslands R. da Rocha UFC

Abstract


Crop health is a crucial concern in agriculture, which has led to the development of various technological approaches to ensure crop vitality. One of the challenges facing farmers is the need to combat pests, such as Spodoptera frugiperda, which significantly affects several types of crops, such as corn and cotton, on a global scale. Accurate monitoring of insect population density per unit area is essential for Integrated Pest Management (MIP) to provide farmers with essential information about the occurrence of pest species in their crops. However, this monitoring process is predominantly manual and requires producers. This article aims to present the development of a trap and a machine learning model for automatically detecting this pest in the field, thereby supporting decision-making for implementing MIP programs.

References

Alves, A. N., Souza, W. S., and Borges, D. L. (2020). Cotton pests classification in field-based images using deep residual networks. Computers and Electronics in Agriculture, 174:105488.

Bakry, M. M. S. and Abdel-Baky, N. F. (2024). Impact of the fall armyworm, spodoptera frugiperda (lepidoptera: Noctuidae) infestation on maize growth characteristics and yield loss. Brazilian Journal of Biology, 84:e274602.

Bechar, M. E. A., Settouti, N., Daho, M. E. H., Adel, M., and Chikh, M. A. (2019). Influence of normalization and color features on super-pixel classification: application to cytological image segmentation. Australasian physical & engineering sciences in medicine, 42:427–441.

Bergstra, J. and Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of machine learning research, 13(2).

Chen, M., Chen, L., Yi, T., Zhang, R., Xia, L., Qu, C., Xu, G., Wang, W., Ding, C., Tang, Q., and Wu, M. (2023). Development of a Low-Power Automatic Monitoring System for Spodoptera frugiperda (J. E. Smith). Agriculture, 13(4).

Du, L., Sun, Y., Chen, S., Feng, J., Zhao, Y., Yan, Z., Zhang, X., and Bian, Y. (2022). A novel object detection model based on faster r-cnn for spodoptera frugiperda according to feeding trace of corn leaves. Agriculture, 12(2):248.

Gallo, D., Nakano, O., Silveira Neto, S. S., Carvalho, R. P. L., Batista, G. C., Filho, E. B., P., P. J. R., Zucchi, R. A., Alves, S. B., Vendramim, J. D., Marchini, L. C., Lopes, J. R. S., and Omoto, C. (2002). Entomologia agrícola. FEALQ, Piracicaba.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., and Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861.

Karunathilake, E., Le, A. T., Heo, S., Chung, Y. S., and Mansoor, S. (2023). The path to smart farming: Innovations and opportunities in precision agriculture. Agriculture, 13(8):1593.

Kenis, M., Benelli, G., Biondi, A., Calatayud, P.-A., Day, R., Desneux, N., Harrison, R. D., Kriticos, D., Rwomushana, I., van den Berg, J., et al. (2022). Invasiveness, biology, ecology, and management of the fall armyworm, spodoptera frugiperda. Entomologia Generalis.

López, A.-F. J., Jiménez-López, F.-R., and Alvarez, C. S. L. (2023). Electronic trap for field detection of fall armyworm (spodoptera frugiperda) in corn. In 2023 IEEE 6th Colombian Conference on Automatic Control (CCAC), pages 1–5.

Maino, J. L., Schouten, R., Overton, K., Day, R., Ekesi, S., Bett, B., Barton, M., Gregg, P. C., Umina, P. A., and Reynolds, O. L. (2021). Regional and seasonal activity predictions for fall armyworm in australia. Current Research in Insect Science, 1:100010.

Montezano, D. G., Sosa-Gómez, D., Specht, A., Roque-Specht, V. F., Sousa-Silva, J. C., Paula-Moraes, S. d., Peterson, J. A., and Hunt, T. (2018). Host plants of s. frugiperda (lepidoptera: Noctuidae) in the americas. African entomology, 26(2):286–300.

Rawat, W. and Wang, Z. (2017). Deep convolutional neural networks for image classification: A comprehensive review. Neural computation, 29(9):2352–2449.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al. (2015). Imagenet large scale visual recognition challenge. International journal of computer vision, 115:211–252.

Souza, W. S., Alves, A. N., and Borges, D. L. (2019). A deep learning model for recognition of pest insects in maize plantations. In 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), pages 2285–2290. IEEE.

Sparks, A. N. (1979). A review of the biology of the fall armyworm. Florida entomologist, pages 82–87.

Torres, J. B. and Bueno, A. d. F. (2018). Conservation biological control using selective insecticides–a valuable tool for ipm. Biological Control, 126:53–64.

Zhang, H., Zhao, S., Song, Y., Ge, S., Liu, D., Yang, X., and Wu, K. (2022). A deep learning and grad-cam-based approach for accurate identification of the fall armyworm (spodoptera frugiperda) in maize fields. Computers and Electronics in Agriculture, 202:107440.
Published
2024-07-21
SILVA, Wendell dos S.; SOARES, Bianca; ALMEIDA, Valentine de L.; VIANA, Leonardo; PASTORI, Patrik L.; MAGALHÃES, Deborah M. V.; ROCHA, Atslands R. da. Detection of the Pest Spodoptera frugiperda in Corn Cultivation Using Smart Traps and Computer Vision. In: WORKSHOP ON COMPUTING APPLIED TO THE MANAGEMENT OF THE ENVIRONMENT AND NATURAL RESOURCES (WCAMA), 15. , 2024, Brasília/DF. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024 . p. 61-70. ISSN 2595-6124. DOI: https://doi.org/10.5753/wcama.2024.2376.