Web Service for Data Imputation in Univariate Time Series
Abstract
A common problem in environmental data recording is gaps, which can be mitigated by data imputation. Although there are computational libraries for imputation, these require learning new technologies and programming languages. To meet this need, this work presents a web service for imputing time series data, which allows a client application to request imputations on data with gaps. In addition to describing the architecture of this service, this article shows results of a rigorous evaluation of service performance in terms of imputation time and quality, in order to provide a global view of the trade-off between execution time and accuracy of each algorithm.References
Addi, M., Gyasi-Agyei, Y., Obuobie, E., and Amekudzi, L. K. (2022). Evaluation of imputation techniques for infilling missing daily rainfall records on river basins in ghana. Hydrological Sciences Journal, 67(4):613–627.
Bezerra, D., Junior, J., Gonçalves, G., and Medeiros, V. (2019). Avaliação de disponibilidade de estações de medição meteorológica. In Anais do X Workshop de Computação Aplicada a Gestão do Meio Ambiente e Recursos Naturais, pages 1–10, Porto Alegre, RS, Brasil. SBC.
Chauhan, A. (2019). A review on various aspects of mongodb databases. International Journal of Engineering Research & Technology (IJERT), 8(5).
Daigneau, R. (2011). Service Design Patterns: fundamental design solutions for SOAP/WSDL and restful Web Services. Addison-Wesley.
Dhevi, A. S. (2014). Imputing missing values using inverse distance weighted interpolation for time series data. In 2014 Sixth international conference on advanced computing (ICoAC), pages 255–259. IEEE.
Flores, A., Tito, H., and Silva, C. (2019). Local average of nearest neighbors: Univariate time series imputation. International Journal of Advanced Computer Science and Applications, 10(8).
Huang, Z.-Q., Chen, Y.-C., and Wen, C.-Y. (2020). Real-time weather monitoring and prediction using city buses and machine learning. Sensors, 20(18):5173.
Idris, N., Foozy, C. F. M., and Shamala, P. (2020). A generic review of web technology: Django and flask. International Journal of Advanced Science Computing and Engineering, 2(1):34–40.
Kadiyala, A. and Kumar, A. (2017). Applications of python to evaluate environmental data science problems. Environmental Progress & Sustainable Energy, 36(6):1580–1586.
Larrucea, X., Santamaria, I., Colomo-Palacios, R., and Ebert, C. (2018). Microservices. IEEE Software, 35(3):96–100.
Moritz, S. and Bartz-Beielstein, T. (2017). imputets: time series missing value imputation in r. R Journal, 9(1):207.
Bezerra, D., Junior, J., Gonçalves, G., and Medeiros, V. (2019). Avaliação de disponibilidade de estações de medição meteorológica. In Anais do X Workshop de Computação Aplicada a Gestão do Meio Ambiente e Recursos Naturais, pages 1–10, Porto Alegre, RS, Brasil. SBC.
Chauhan, A. (2019). A review on various aspects of mongodb databases. International Journal of Engineering Research & Technology (IJERT), 8(5).
Daigneau, R. (2011). Service Design Patterns: fundamental design solutions for SOAP/WSDL and restful Web Services. Addison-Wesley.
Dhevi, A. S. (2014). Imputing missing values using inverse distance weighted interpolation for time series data. In 2014 Sixth international conference on advanced computing (ICoAC), pages 255–259. IEEE.
Flores, A., Tito, H., and Silva, C. (2019). Local average of nearest neighbors: Univariate time series imputation. International Journal of Advanced Computer Science and Applications, 10(8).
Huang, Z.-Q., Chen, Y.-C., and Wen, C.-Y. (2020). Real-time weather monitoring and prediction using city buses and machine learning. Sensors, 20(18):5173.
Idris, N., Foozy, C. F. M., and Shamala, P. (2020). A generic review of web technology: Django and flask. International Journal of Advanced Science Computing and Engineering, 2(1):34–40.
Kadiyala, A. and Kumar, A. (2017). Applications of python to evaluate environmental data science problems. Environmental Progress & Sustainable Energy, 36(6):1580–1586.
Larrucea, X., Santamaria, I., Colomo-Palacios, R., and Ebert, C. (2018). Microservices. IEEE Software, 35(3):96–100.
Moritz, S. and Bartz-Beielstein, T. (2017). imputets: time series missing value imputation in r. R Journal, 9(1):207.
Published
2024-07-21
How to Cite
ABREU, Jeremias Lima; VIDAL, Douglas Almeida; GONÇALVES, Glauco Estacio.
Web Service for Data Imputation in Univariate Time Series. In: WORKSHOP ON COMPUTING APPLIED TO THE MANAGEMENT OF THE ENVIRONMENT AND NATURAL RESOURCES (WCAMA), 15. , 2024, Brasília/DF.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2024
.
p. 131-140.
ISSN 2595-6124.
DOI: https://doi.org/10.5753/wcama.2024.2928.
