Extraction of Spatio-Temporal Series from a Geospatial Data Cube for the Benefit of Coffee Growing in Minas Gerais

  • Marcelo Robert Santos UNIFEI
  • Melise M. V. Paula UNIFEI
  • Vanessa C. O. Souza UNIFEI

Abstract


Coffee production is a pre-eminent and significant agricultural activity in the Brazilian economy. That said, this article seeks to explore a model for storing and processing vegetation indices for coffee growing obtained through orbital images from the Sentinel-2 satellite stored in the Brazil Data Cube. The data flow and data structure were defined, having selected the document-based database MongoDB due to the spatial and temporal query functions.

References

Souza, V. C. O., Parede, D. A., Volpato, M. M. L., and Alves, H. M. R. (2019). Aplicações do google earth engine na cafeicultura do sul de minas gerais. In X Simpósio de Pesquisa dos Cafés do Brasil.

Vieira, T. G. C., Alves, H. M. R., LACERDA, M., VOLPATO, M., and de SOUZA, V. (2010). Estudo espaço-temporal da cafeicultura na região de são sebastião do paraíso-mg, utilizando geotecnologias. In Reunião Brasileira de Conservação do Solo e da Água, volume 18.
Published
2024-07-21
SANTOS, Marcelo Robert; PAULA, Melise M. V.; SOUZA, Vanessa C. O.. Extraction of Spatio-Temporal Series from a Geospatial Data Cube for the Benefit of Coffee Growing in Minas Gerais. In: WORKSHOP ON COMPUTING APPLIED TO THE MANAGEMENT OF THE ENVIRONMENT AND NATURAL RESOURCES (WCAMA), 15. , 2024, Brasília/DF. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024 . p. 211-214. ISSN 2595-6124. DOI: https://doi.org/10.5753/wcama.2024.3066.