Comparative Analysis of Climate Models with INMET Data Using Hydrological Metrics and AI-Based Interpretation
Abstract
In the context of climate change, there is a critical need to validate global climate models, which presents the challenge of comparing simulated data with real-world observations, particularly in complex regions such as the Amazon. To address this, this paper proposes the Climate Dataset Analyzer (CDA), an AI-based tool that employs hydrological metrics (KGE, NSE) to compare data from CEDA and INMET. The results reveal that CEDA models capture general precipitation trends but exhibit limitations in extreme events and microclimates, with significant variations in cities like Tarauacá and Palmas. It is concluded that CDA is an effective solution for climate analysis, though improvements, such as enabling simultaneous multi-model comparisons are required to enhance its applicability in climate studies.References
Bock, L., Lauer, A., Schlund, M., Barreiro, M., Bellouin, N., Jones, C., Meehl, G., Predoi, V., Roberts, M., and Eyring, V. (2020). Quantifying progress across different cmip phases with the esmvaltool. Journal of Geophysical Research: Atmospheres, 125(21):e2019JD032321.
Davini, P. and dAndrea, F. (2020). From cmip3 to cmip6: Northern hemisphere atmospheric blocking simulation in present and future climate. Journal of Climate, 33(23):10021–10038.
Duc, L. and Sawada, Y. (2023). A signal-processing-based interpretation of the nash–sutcliffe efficiency. Hydrology and Earth System Sciences, 27(9):1827–1839.
Eyring, V., Gillett, N. P., Achuta Rao, K. M., Barimalala, R., Barreiro Parrillo, M., Bellouin, N., Cassou, C., Durack, P. J., Kosaka, Y., McGregor, S., et al. (2021). Human influence on the climate system (chapter 3).
Harris, I., Osborn, T. J., Jones, P., and Lister, D. (2020). Version 4 of the cru ts monthly high-resolution gridded multivariate climate dataset. Scientific data, 7(1):109.
INMET (2024). Banco de dados meteorológicos.
IPCC (2021). Climate Change 2021 The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
O’Neill, B. C., Tebaldi, C., Van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., et al. (2016). The scenario model intercomparison project (scenariomip) for cmip6. Geoscientific Model Development, 9(9):3461–3482.
Townsend, P. and Wilkinson, C. (2021). Gathering evidence of impact from research support services: Examining impact in the context of the centre for environmental data analysis. Research Evaluation, 30(2):169–178.
Vrugt, J. A. and de Oliveira, D. Y. (2022). Confidence intervals of the kling-gupta efficiency. Journal of Hydrology, 612:127968.
Davini, P. and dAndrea, F. (2020). From cmip3 to cmip6: Northern hemisphere atmospheric blocking simulation in present and future climate. Journal of Climate, 33(23):10021–10038.
Duc, L. and Sawada, Y. (2023). A signal-processing-based interpretation of the nash–sutcliffe efficiency. Hydrology and Earth System Sciences, 27(9):1827–1839.
Eyring, V., Gillett, N. P., Achuta Rao, K. M., Barimalala, R., Barreiro Parrillo, M., Bellouin, N., Cassou, C., Durack, P. J., Kosaka, Y., McGregor, S., et al. (2021). Human influence on the climate system (chapter 3).
Harris, I., Osborn, T. J., Jones, P., and Lister, D. (2020). Version 4 of the cru ts monthly high-resolution gridded multivariate climate dataset. Scientific data, 7(1):109.
INMET (2024). Banco de dados meteorológicos.
IPCC (2021). Climate Change 2021 The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
O’Neill, B. C., Tebaldi, C., Van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., et al. (2016). The scenario model intercomparison project (scenariomip) for cmip6. Geoscientific Model Development, 9(9):3461–3482.
Townsend, P. and Wilkinson, C. (2021). Gathering evidence of impact from research support services: Examining impact in the context of the centre for environmental data analysis. Research Evaluation, 30(2):169–178.
Vrugt, J. A. and de Oliveira, D. Y. (2022). Confidence intervals of the kling-gupta efficiency. Journal of Hydrology, 612:127968.
Published
2025-07-20
How to Cite
COSTA, Wesley de Sousa; PAIXÃO, Gustavo; JUNIOR, Warley; MONTEIRO, Maurílio; OLIVEIRA, Aline; ALVES, Elton.
Comparative Analysis of Climate Models with INMET Data Using Hydrological Metrics and AI-Based Interpretation. In: WORKSHOP ON COMPUTING APPLIED TO THE MANAGEMENT OF THE ENVIRONMENT AND NATURAL RESOURCES (WCAMA), 16. , 2025, Maceió/AL.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2025
.
p. 266-275.
ISSN 2595-6124.
DOI: https://doi.org/10.5753/wcama.2025.9109.
